

r ^tnmmmr^^mmmmi^ vwi-'im

LCURITY Ct ASSlFlCfTlCS Of THIS P*r,F '1.' en P«'« Fnlrred,

REPORT DOCUMENTATION PAGE
I RtPORT NUMBER

AfOSH ■ TR» 7 5 - I 0 g j

2 OOVT ACCESSION NO

4 TITLE (mnd Submit)

A MODEL OF HUMAN COGNITIVE BEHAVIOR IN WRITING
CODE FOR COMPUTER PROGRAMS, VOL I

READ INSTRUCTIONS
BEFORE COMPLETING I-ORM

3 RECIPIENT'S CAT ALOC NUMÜER

$ TYPE OF REPORT & PERIOD COVEREC

7. AUTHORCt;

Ruven Brooks

9. PERFORMING ORGANIZATION NAME AND ADDRESS

Carnegie-Mellon University
Computer Science Dept
Pittsburgh, PA 15213

II. CONTROLLING OFFICE NAME AND ADDRESS

Defense Advanced Research Projects Agency
1400 Wilson Blvd

Interim
6 PERFORMING ORG. REPORT NUMBER

8 CONTRACT OR GRANT NUMBERClJ

F44620-73-C-0074

10. PROGRAM ELEMENT. PROJECT, TASK
AREA A WORK UNIT NUMBERS

61101D

A0-2466

Arlington. VA 22209
«. MONITORING AGENCY NAME » ADDHESSnl dilletenl from Controlllnt Office;

Air Force Office of Scientific Research/NM
1400 Wilson Blvd
Arlington, VA 22209

12 REPORT OATE

May, 1975
13. NUMBER OF PAGES

j^i
15. SECURITY CLASS, (ol ihlt ttporl)

UNCLASSIFIED
15«. DECLASSIFICATION DOWNGRADING

SCHEDULE

16 DISTRIBUTION STATEMENT fof (Mi Report)

Approved for public release; distribution unlimited.

It. DISTRIBUTION STATEMENT (ol Ih» abtlrmct eiUered in Block 30. II dlllttenl from Rmporl)

U. SUPPLEMENTARY NOTES

19. KEY WORDS CConrinu« on rtvtrtm tide .' necestmry and Idenllly by bloc* number;

20 ABSTRACT rConllnue on reverse «rde If neces««rv end idenllly by block number)

A theory of human cognitive processes in writing code for computer programs
is presented. It views behavior in terms of three processes, understanding,
planning, and coding. The first of these consists of acquisition of infor-
mation from the problem instructions and directions. This is used by the
planning process to create a solution plan stated as a set of functional
specifications in a language which is independent of the syntax of the
particular programming language. The coding process converts this plan to
code using a process named "symbolic execution" in which pieces of code

DO/iSTnWa EDITION OF 1 NOV 65 IS OBSOLETE UNCLASSIFIED
SECURIT- CLASSIFICATION OF THIS PAGE fWTien Dmlm Enlered

_*. _. _________

T"W" imwvm .mt i.MH^i^OTv^nnm^pi^ 1 i nil

-X. UNUUVbbiMh U

SCCuniTV CLASSIFICATION Of THIS PAOECWIWI Dar« Fni.'.-*

Block 20/Abstracc

are assigned effects expressed in terms of the functions the programer
intends the code to perform in achieving the purpose of the program.

Within the frar.ev.'ork of this theory, a more explicit model of the coding
process was developed. The model is based on a production system and
has been implemented as a computer program. Given plans taken from
protocols of a programmer writing a series of short FORTRAN programs, it
is able to generate the same code in the same order as the programmer
did.

The model makes three assertio ns about programmer behavior in writing
programs:

1. Programmers have alarge amount of specific knowledge about how
to encode particular plan elements.

2. Programmers generate code by using the effects assigned to
each piece to generate the next.

3. The basic units of a progranrner's knowledge of language syntax
are determined by the way in which he uses the language, rather than by
properties of the syntax alone.

The implications of these assertions are discussed for the use of
production svscems to reuresent utliaviui . LVL b(Mbu*MM >»4MIM»'■■UMtflfci *•"•■'
error aiiai^sio in uw uu^g^.i^, u.>v< ^w^ huk »^w »* BM*»** W^—-..-..0 ...

problem solving systems.

UNCLASSIFIED
SECumTV CLASSiriCATiON OF THIS PAGECIWi«! D«f» Enfrtd)

-

A Model of Human Cognitive Behavior
in Writing Code tor Computer Programs

Ruven Brooks

May 197 5

Vol. 1.

This work was supported in part by a grant from Xerox Corporation and in pert by

th© Defense Advanced Research Projects Agency under contract no. F44620-73-C-

0074 monitored by the Air Force Office of Scientific Research.

HI

J

PPM^MMMPMIVIM^-^^^V«««^^»" i i-mmmmm^n -»*■ ■"• ———■■"

Abstract

A theory of human cognitive processes in writing code for computer
programs is presented. It views behavior In terms of three processes,
understanding, planning, and coding. Thü first of these consists of
acquisition of information from the problem instructions and directions.
This is used by the planning process to create a solution plan stated as a
set of functional specifications ■ . a language which is independent of the
syntax of the particular programming language. The coding process
converts this plan to code using a process named "symbolic execution" in
which pieces of code are assigned effects expressed in terms of the
functions the programmer intends the code to perform in achieving th«
purpose of the program.

Within the framework of this theory, a more explicit model of the coding
process was developed. The model is based on a production system and
has been implemented as a computer program. Given plans taken from
protocols of a programmer writing a series of short FORTRAN programs, it
is able to generate the same code in the same order as the programmer
did.

The model makes three assertions about programmer behavior in
writing programs:

1. Programmers have a large amount of specific knowledge about
how to encode particular plan elements.

2. Programmers generate code by using the effects assigned to
each piece fo generate the next.

3. The basic units of a programmer's knowledge of language
syntax are determined by the way in which he uses the language,
rather than by properties of the syntax alone.

The implications of these assertions are discussed fo- the use of
production systems to represent behavior, for teaching programming, for
error analysi? in de-buggi^, and for the use of back-tracking in problem
solving systems.

i«

- - - - — ■ - '- --HMI 1 ■—-• —^—^.„„^^

Contents April 6, 1975

Table of Contents

1.0 A Theory of Computer Programming

1.1 introduction
1.2 A Theory of Human Computer Programming Behavior

1.2.1 The Scope of the Theory
1.2.2 The Structure of the Theory
1.2.3 Understanding
1.2.4 Planning
1.2.5 Coding

1.3 The Design Task Nature of Programming
14 Overview and Forward

3
5
7
8
8

10
16
19
21

2.0 A Data Base for Testing the Theory 22

2..1 Preliminary Processing
2..2 Times
2..3 Verifying the Process Structure

25
25
28

3.0 A Model of Coding Behavior 31

3.1 Introduction
3.2 General Structure of the Mode!
3.3 'mplementation in the Model

3.3.1 Short-term Memory: Model implementation
3.3.2 Production System: Model implementat'on
3.3.3 Other Long-term Memory Structures
3.3.4 MEANINGS
3.3.5 Code: Basic Organization

3.4 Knowledge Representations in the Model
3.4.1 The Plan
3.4.2 Templates and Effects: General Structure

3.5 Processing Mechanisms
3.5.1 Code Generation and CODE-GEN
3.5.2 Comparing Plans and Effects
3.5.3 Rehearsal and the L00K-AT-C0DE Mechanism
3.5.4 Modifying Code and HOW-MODIFY
3.5.5 Generating Names: NEWQUAN
3.5.6 Symbolic Execution and the St'ucture of the Model

31
32
36
36
37
40
41
45
47
47
49
52
52
56
57
59
60
61

•mmmmmmm/mmm

Contents April 6, 1975

4.0 Application of the Model to the Protocols 63

4.1 Problem RICHARD 64
4.1.1 Planning in the Protocol 64
4.1.2 Operation of the Program for Lines 13-60 68

4.2 Problem LEE 81
4.2.1 Program Operation for Lines 52-141 85

4.3 Problem JOHN 97
43.1 Model Operation for Lines 279-359 99

4.4 Problem LARRt 108
4.4.1 Program Operation for Lines 25-59 109

4.5 Evaluation of the Model for the 4 Segments 114
4.6 A Note on STM Size 116

5.0 Analysis of the Model 118

5.1 Support for the Assertions about Knowledge Representation 119
5.1.1 Analysis of Frequency of Production Use 119
5.1.2 Evidence from Plans in Other Problems 121
5.1.3 Plan for Problem WILLIAM 122
5.1.4 Plan for Problem CARL 123
5.1.5 Plan for Problem ROBERT 124
5.1.6 Plan for Problem FRANK l?6
5.1.7 Conclusions from the 4 Plans 126

5.2 Support for Assertions about Symbolic Execution 128
5.3 Support for Assertions about Syntax Knowledge 130

6.0 Implications of the Model 134

6.1 roduction Systems as Behavioral Representations 134
6.2 Implications for t te Use of Back-tracking 135
6.3 Implications for A Theory of debugging 137
6.4 Implications for Teaching Programming 139
6.5 Implications for Automatic Programming 141

l'f ■ ■■»•■PWWWW^«^»'

A Theory of Computer ProgrwMMng

1.1 Introduction

The development of large dig)'at computer-, over the past 25 years has led to the

development of theories of human behavior which view it :n terms of Information

processing systems; since its inception in the mid-1950's the information processing

framework for theories of human problem sofving (Newell & Simon, 1972) has been

applied to a large, and still growing, set of tasks which can be categon/ed along a few

basic dimensions. One large group of tasks that has been useful in developing the

mechanisms of the framework consists of laboratory tasks of short duration - a half

hour or less - with relatively little direct applicability outside the laboratory. Subjects

rarely have much experience with the tasks, and they do not attain any large degree of

skill during the course of the study. Examples of such tasks are symbolic arithmetic

("cryptarithmetic") problems (Newell & Simon, 1972) the Moore-Anderson logic

problems (Newell & Simon, 1972), and the problems, such as Tower of Hanoi and

Missionaries and Cannibals, used with the General Problem Solver (Ernst & Newell,

1969).

Other work in the context of this framework has followed two major branches. One

direction in which work within this framework has moved is towards studying certain

simple, basic problem-solving processes which act as the building blocks for problem-

solving In a wide variety of tasks. Included are studies of concept-Identification (Simon

& Kotovsky, 1963), children's and adult's seriation behavior (Young, 1973; Klahr, 1972),

and children's conception of number (Klahr and Wallace, 1973).

n—*i

1

A second major effort has been directed towards the study of behavior in more

comple. p,oblemS such as chess (Newell & S.mon. 1972). Though the segments studied

in the laboratory are usually short, chess d.ffers from the tasks in the other groups in

that it is a task that takes a long penod of time; an ent.re game takes several hours.

Additionally, and perhaps more .mportant, behav.or in chess .s highly determined by

skills acquired over a long penod of t.me and wh.ch are developed to a diverse extent

in different players.

One mdicat.on of th.s comes fron a study (Chase & S.mon. 1973) on differences in

performance between a chess master and lesser players on tasks involving the re-

construction of a pos.t-on en a chess board after v.ewmg the position on another board.

From analysis of t.mmg data, the superior performance of the master player is

attributable to his ab.lity to organiee h.s perceptions of the board in larger short-term

memory chunks or un.ts than those used by the other players, rather than by hü having

a 'arger short-term memory per se. In S.mon & G.imartm (1972). this ability was

explamed on the t.sis of the master's hav.ng arable a larger number of patterns into

which the p.eces on the board could be organized. Since these patterns must be

acqmred from expenence w.th and study of the game, these stud.es show clearly the

importance of acqu.red sk.ll. rather than inherent ab.l.ty. in chess behavior.

The study of computer prograrnm.ng is an addition to this second group. Like chess,

computer programming ,s a q.-te protracted problem-solvmg activity; some programs

take as much as several hundred hours to wr.te. Also like chess, programming involves

skills which are built up over long per.ods of t.me; the ex.stence of semester-iong

university courses in programming and of lengthy books written on programming

techniques are an obvious basis for this assertion.

T
«■Mil ■ ■■ mtm iii ii ■ na ^ i 1 mmtmm mt^m^nmm^t^mmm

1

Programming differs from the other members of this second group in one major

respect. In solving other problems in this group, the problem solver's behavior can be

described in terms of a closed, small set of primitive Knowledge elements and a closed,

small set of operators which act on these Knowledge elements. For example, a chess

player's behavior In playing a game of chess can be described in terms of the player's

Knowledge of configurations of pieces and of a set of moves or move sequences which

alter these configi rations; while these may vary slightly between, say, openings and

middle-game play, they remain essentially the same through out the game. These

Knowledge elements and the operators form together what is Known as a problem

space; the problem space together with the rules for when the operators should be

invoked form a complete model of an individual's behavior. As the evidence presented

later in this paper will show, the situation in programming is quite different; insteed of

solving the problem with u fixed set of operators and Knowledge elements, new

Knowledge elements and operators are continuously being introduced as the problem-

solver worKs towards a solution. This is a typical situation in a class of problems

referred to as "design" problems. Another example of a design problem Is the

arrangameht of fixtures in a bathroom (Eastman, 1969).

1.2 A Theory of Human Computer Programming Behavior

Although programming is an activity which is engaged in, in one form or another, by

more then a million people (Boehm, 1972), research on human behavior in programming

is very sparse. The earliest research along this lines is a small group of studies

concerned with the effects of time-sharing versus batch on programmer productivity

(Grant and SacKman, 1967; Smith, 1967; Schatzoff, Tsao, and Wiig, 1967; Gold, 1968).

While changing economics have alte ed the answers to the basic cost questions thet

wmmßiimmmmm*m^<mmmm**mmmmm^^^^^mv^m^**^^~^—*i'' | "■'^l ■»^^^PHW wimwm^^mmm^mtum 11 - ., mmmm niwim*w*^m^m

1

these studies were aimed at, an incidental finding, the extremely wide range of

differences in performance across both problems and programmers, has been supported

by later studies. (A recent study by Weinberg (1974) suggests that this may, in pert,

be product of programmer goals rather than a property of the task itself.) A second

group of more recent studies has been in [he area of debugging behavior (Rubey, 1968;

Youngs, 1969; Gould and Drongowski, 1972; Gould 1974). While it is difficult to

summarize the rrsults of all these studies, it is notable that they all indicate that

certain language structures appear to caute particular difficulty in debugging. Worthy

of mention because of its title, the book. Psychology of Programming (Weinberg, 1971),

is directed more at the social psychology of the programming environment than at actual

programmer cognitive behavior. Finally, most recently there has been research done on

the effect of certain language constructs on program understandability (Sime, Green and

Guest, 1973; Weissman, 1973). It has elaborated the finding hinted at in the debugging

studies, that some language constructs are easier or better to program with than others.

The research presented here takes a different approach than these previous

studies. Instead of attempting to measure individual variables associated with

programmer behavior, it presents a theory of the program writing process. The theory

is based on a set of ideas developed by Allen Newell (1974) (i) and lies within the

(i) The elements of the Newell theory that are used here are: (1) Development of

plans by heuristic search consisting of successive functional elaboration in which

functional specifications invoke structures which, in turn, require further functions. (2)

Generation of code by a symbolic execution process in which, first, code is laid down

and then consequences are generated from it. This consequence generation produces •

large number of sub-problems. (3) Solution of these sub-problems by a recognition

6

frameworK of the information processing approach to human problem solving.

1.2.1 The Scope of the Theory

Though computer programming has been spoken of as though it were one task, in

fact, a number of different tasks are included unrier this heading. They include, among

many others, writing specifications for programs, writing programs given a set of

specifications, debugging programs that another programmer has written, and writing

documentation for programs. The particular task that has been selected for the focus of

this theory is one in which the programmer is given a description of the input data and

a specification of the desired output. The orogrammer must then find an algorithm,

including the selection of a representation within the program for the external data, to

produce the desired output and implement the algorithm in the programming language.

As a working situation, it is one wNch occurs frequently in scientific and educational

programming environments and as a sub-part of almost any larger programming task.

The theory is not yet formulated to include debugging behavior or situations in

which different parts of the task are performed by different people, for example, as in

arge system writing projects. These restrictions are due mostly to limitations of

resources, rather than to any inherent properties of the theory that are apparent.

Some justification for the debugging ommission is that, since program writing proceeds

program debugging chronologically and since the debugging process includes or makes

assumptions about the processes which generated the code in the first place,

development of a theory of program writing ought to take precedence. Similarly, a

theory of how one individual performs the several parts to this task In sequence takes

process. Together with symbolic execution, this implies goal control dependent on the

problem structure rather than via a goal rtack.

7

■

1

precr dence over theorier about how the task Is performed by several individuals

interacting.

1.2.2 The Structure of the Theory

The theory consists of three basic proceeses, understanding, planning, and coding,

though this work will focus oniy on coding. I. asserts that each of these processes

occurs one or more times in every programming task. The relationships among the

processes, particularly regarding the way they invoke each other are described In the

following sections.

1.2.3 Understanding

When a problem-solver is presented with a problem, he has a variety of sourcos of

information, both internal and external, available about itj these include his general

world knowledge, knowledge about the general type of problem at hand, reference

works such as programming language manuels, and last but not least written or spoken

problem directions. Before he can actually start work on the problem, he must use

these information sources to build representations of the basic elements that the

problem deals with and of their properties. Specifically, he must have representations

of the initial state of the problem, the desired final state or goal, and one or more

operations which he can apply, appropriately, to begin the transformation on the initial

state. The process of building these representations is referred to as "understanding"

m this theory; it is one of the three basic problem-solving processes which make up the

theory.

The model for the understanding process that is adopted for this theory is based on

one developed for a varir.nt of the Towers of Hanoi task (Hayes & Simon, 1973). In

1

tiieir study subjects were given a single set of written instructions and had to solve the

problem described in it. Their theory for the task proposes two basic processes, an

UNDERSTANDING process and a SOLVING one; only the UNDERSTANDING process will be

discussed here. In their theory, the UNDERSTANDING process extracts nrormation from

the problem description until enough information has been extracted to permit the

SOLVING process to begin work. The SOLVING process then runs until either the

problem is solved or the problem solver runs into difficulties; if this occurs control may

then return to the UNDERSTANDING process. The UNPERSTANDING process consists of

two sub-processes, a LANGUAGE interpreting process and a problem space

CONSTRUCTION process, which alternate in the same manner as the UNDERSTANDING

•nd SOLVING processes. Explicit mechanisms are presented for the internal structures

of the LANGUAGE and CONSTRUCTION processes, but no mechanism is provided for how

the alternation between the two takes place. Similarly, wh.le the general structure is

outlined, no specific mechanisms are provided for the alternation between

UNDERSTANDING and SOLVING

Not surprisingly, evidence of an understanding processes, in the form of alternation

between reading directions and reasoning about what they say, is also seen in records

of behavior in programming problems. In essential structure, this understanding

process is presumed identical to the one described by Hayes and Simonj information

extraction and incorporation phases alternate until understanding is complete. A major

difference from their model occurs in the relationship between understanding and .he

other parts of the problem-solving process. When understanding terminates the

outcome in their model is a problem space, a closed, small set of operators and

knowledge primitives the final solution to the problem takes place In this problem

1

space. In programming, as mentioned, probten» «olution does not take place in the same

sort of problem space as fo- non-design tasks; what takes place instead when

understanding terminates is the second of the three processes wNch meke up the

theory, planning.

1.2.4 Planning

Planning is the second of the three proceeees postulated by the theory. The type

of plan produced by it can best be dtecrteed a« a method for solving the programming

problem; it consists of specifications of the way In which information from the real world

is to be represented within the program and of the operations to be performed on

these representations in order to achieve «w deerred effects of the program. These

methods are used as Schemas or templates to »uide the writing of the actual code In

much the same way as plans are used to guide solutions of logic problems by the

Generel Problem Solver (Newell and Simon, 1972).

It is an assertion of the theory fhet such a plan exists for nearly every

programming problem that fits wttNn the basic task definition. The basis for this

•ssertion of the existence of plans is one of sufficiency. The space of possible

programs is huge, even in comparison with other complex tasks; compare, for example,

the number of possible, "reasonable," programs with the number of "reasonable" chess

games. Search of even a small fraction of this space is not feasible; therefore,

programming must involve extremely powerful heuristics which eliminate seerch or

reduce it to a trivial level. In nearly all programming languages, each line of code

actually involves a great many decisions - basic statement types, variable and

expression choices, labels, etc. - and any heuristic which evaluates code on the basis of

a single decision is not likely to have sufficient power. Only the use of plans Is •

powerful enough heuristic to make program writing feasible.

10

- -■■--

1

Plans are expressed in a functional language of the sort investigated by Newell and

Freeman (1971); functions specified in the language invoke structures which, in turn,

require ottier functions, a type of behavior which may be characteristic of the whole

class o' design problems. These functional specifications are organized in sequences in

the order in which they are to be carried out. If the program is large and complex

enough, these sequences may be nested in one another so that one sequence acts as a

further elaboration or clarification for a step in another sequence. An example of this

might be in a program to print all the odd numbers in an array. The) Ian could appear

as:

1. Go through the array.
2. Test each number to see if it's odd.
3. If it is, print it out.

The second step might require the further elaboration:

2a. Represent each number as an integer.
2b. Divide it by two.
2c. Multiply it by two.
2d. Compare the result with the original number.
2e. If they are not equal, report that the number is odd.

It is worth comparing the use of this functional language for planning in

programming with the content of plans in the planning version of GPS for the logic tcsk

(Newell and Simon, p.428j 1972) GPS plans by first solving the problem using a set of

abstracted, usually simplified, operators to solve the problem and then ufing this

solution as a plan to guide solution using the original set of operators. The way the

latter is done is to convert each of the operators in the abstracted solution into an

apply-type goal for solution in the original space. These apply goals specify a function

to be invoked, and they often result in the creation of sub-goals for the production of

certain structures. When used in this way, the languages of means-ends specification

U

"^ ' ' '

1

used in GPS is equivalent to the functional language used by human prog.ammera in

their plans for programs.

Also relevent is the language accepted by the Functional Description Compiler

routine of the Heuristic Compiler (Simon, 1971). The input to this routine is a set of

specifications of functions or operations to be performed. The language used to state

these functions is independent of the syntax of the target language and at

approximately the same level of abstraction as that of plans in this theory.

For plans to operate successfully as heuristics, th« functions specified in them mutt

be more global and more general than those available as primitives in the programming

language. There are two reasons for this. The first is so that each function In the plan

generates several statements in the program; if this were not the case, then there

would be nothing to insure consistent use of variable names and the like, and to

guarantee that a quantity calculated in one line would not be immediately recalculated in

the following line because It was needed again.

The second reason is that there are some decisions about the structure of a

program which carry across many lines or section« of code and which cannot be

expressed in the primitives of most programming languages. One example of this kind

of decision might be the selection of a linked list data structure in a FORTRAN program.

The use of this particular data structure will be important within the generation of

many lines of code, but there is no way to express this decision at the level of the

primitives available in FORTRAN. This reasoning supports the idea that the function«

specified in plans a-e more global and general than those available as primitive« in the

programming language, which carry across many lines or sectors.

An important question in discussing programming plans is to what extent these

12

■^^^^^^^^^^^^^^^-^^^^^^^^^^^^^^^—

1

planning functions are sufficiently global .VHJ general to be used across different

programming languages; this is equivalent to avking to what exten» tte plan that the

programmer creates is dependent on the language in which the program will be written.

One possibility is that, for a given problem, an entirely different plan wilt be created

for each programming language in which the program is written. There are two

substantial arguments against this position. One is the introspective report of many

programmers that they are able to think about iho solution to a programming problem In

terms independent of the syntax or semantics of a particular programming language. A

second is the informe" finding that, when given a problem description and several,

similar, languages in which the program might be written, most "multi-lingual"

programmers have no difficulty in creating plans that will work in any of the languages.

A second possibility, representing the opposite extreme, is that a single planning

process and functional language serve for all the languages that a programmer knows

and that the plan is dependent on only the problem alone. This would imply that, for a

given problem, the programmer would use the same plan whether the target language

were LISP or FORTRAN. In fact, programmers do not usually use plans involving lists if

the program is to be in FORTRAN nor do they select algorithms using arrays for LISP

programs, indicating that the creation of a plan Is to some extent dependent on the

programming language.

The locus of this language dependency seems to be shared between two attributes

of programming languages. One is in the data structures (and access methods) available

in the programming languages; languages which share common data structures probably

•Iso share common plans and a common planning process This would be consistent

both with the observation that programmers are able to create common plans for pairs

13

rrnm^^— ^^-^^

1

of languages such as ALGOL and FORTRAN, which both ha^t array data structur»«, and

with their creation of different plant for LISP and FORTRAN, wWch do not share •

common type of data structure.

The second attribute which determinee whether different languages share common

plans could be control structure. Even two languages «harmg common data structure

may not be able to use the same plans if one has a primerHy recursive control strucure

while the other is strongly sequential. Consider the difference« in the flow-charts for •

LISP recursive factorial program versus a FORTRAN iterative one. Thl« may also play

a roll in the report of many programmers thet they are unab e to crbMo common

FORTRAN-LISP plans, even when the LISP has an array features.

Planning does not take place as a single operations instoad, a process of step-wise

refinement takes place in which each step makes part of the plan more detailed. The

terminating condition for the refinement is that some (reasonably large) part of the

plan is sufficiently detailed so that the programmer feels that he knows how to begin to

translate it into code, even though all of the details of the code are still unknown. At

that point the final process in the writing of programs, coding, takes over. The coding

process operates on a piece or part of a plan until either code is produced or some

criterion is met which causes the coding process to report failure; when failure occurs

information is passed back to the planning process which again attempts to produce •

codeable plan. This alternation is very much like that which occurs between

understanding and solving in the Hayes and Simon model.

As has been mentioned, the primary focus of this will work will be on the coding

process. Since the coding process is dependent on the outcome of the planning process,

a brief exploration of possible ways in which plans could be generated is worthwhile.

14

^—^—

1

To begin with, a recognition process must play a large role. In many, If not most,

programming problems, planning takes place fairly rapidly; in the problems studied in

this research, it began less than 1.7 minutes after the subject had received the

problem description and lasted less than 5 minutes in a 25 minute problem. Little cr no

evidence of of any kind of search activity was seen. This suggests that what takes

place is basically a match between characteristics of »ne current problem and stored

information about similar problems that have been done in the past. The information

retrieved this way could be used either to retrieve a stored plan directly or to provide

other information which could guide the operation of a simple, fast-acting plan

assembler. This recognition mechanism also implies the existence of mechanisms for

extracting characteristics from current prob'-sms and mechanisms for abstracting plans

from solved proolems. Building a theory of the latter will be an especially challenging

problem, as other work on plan abstraction has demonstrated (Fikes, Hart, and Nilsson,

1971).

While the recognition system may take care of the overwhelming majority of cases,

other mechanisms will be necessary for the cases in which stored information is not

sufficient. These might be divided into two broad, general classes: those which use

pr.-gramming knowledge and those which use knowledge from the real-world problem

'lomain for which the program is being written. In the former are included patching and

rearranging existing plans (Sussman, 1973); generalizing from examples- and the use of

diagrams or drawings (Gelernter, Hansen, and Lovelano, i960). In the latter are

included all those situations in which the programrrar goes outside the programming

domain and uses knowledge about the intended use of the program, relationships among

the data, etc. to solve the problem; an example might be use of knowledge about a

15

^mmimmrmmir-*' ■ "m^rw^mmmfmm^^fmmm m<mm.mmm • .«<• -m m- >^ ■> a^» • ■ -~^-~~^i^^*fi^*r- - —^-^—w—^^-^■^„-»«-^■»w^^^^-r— — nipiwiwn i ■ i i n ■ n M

company's accounting policies tr, come up rith a plan for writing a payroll program. (I)

1.2.5 Coding

Th« third o^ the three processes to the theory is coding. For human programmer«,

the beaic cycle for the generatwn of code consists of using the plan to select and write

a piece of code, assigning an effect or consequence to the code that has been written,

and comparing the effect or consequence to the stipulations of the plan. The result« of

this comparison arc used to select and write more code or to change the code that has

been written; in turn, an effect is assigned to this new code whlth Is compared to the

plan. Thi« cycle continues urttil the cumulative effect of the code meets the

requirements of the plan or until some condition, such as effort expendUure, i« fim\

which indicates that the piece of plan is not todeable.

A similar cycle occurs if the programmer is going over ccie he hes already written,

es often occurs when checking over code c: going back to add initialization«. In thi*

case, the programmer takes each piece of the written code, assigns an effect or

consequence to it, and compares it with either the plan or with the effect he ««signed to

the code when he wrote it the first time.

The effects that are assigned to code are based on the differentiations among the

data that t ie program must actually make in order to accomplish It« purpose. Coneider

as an example a program for printing |f! the odd numbers in a set of integer«. The

program must differentiate between odd and even numbers in order to perform thi«

tfisk. An effect th«t could be assigned to a line of code in this progrem migh, be "if the

(i) It is conjectured that one characteristic behavior in the writing of large, as

versus small, programs or systems is that more of the problem-solving behavior

involves the use of this non-programming knowledge.

16

.

^p^^"*-*^P^P"w»" ! !! "vmm^**^mmmmn^mm^m^^^m*mi »mu \ miwrnw mti'w**mi^^mir*^ni \ i m ■ w *m.ifi n i i L.^. .^^ . « P«>P>-< -

1

number is odd, this branches to statement 50," a statement which uses the information

about the odd-even distinction. As more lines of code are written, their effects are

•ccumulated in a manner which also maKes use of thece differentiations; thus, the

effects, "this loops through all the numbers" and "if the number is odd, branch to

statement 50," might be combined o give "this tests each number to see if it's odd."

When effects of this type are assigned to whole segments of code, the result is that the

code is executed with symbols such as "odd number" replacing the real data. Hence, the

whole process has been named "symbolic execution."

The language in which these effects are expressed is a functional one that

resembles closely the language used to express plans. There is, however, an important

distinction between effects in coding and plan statements in the coding process.

Consider the plan statement, "loop through the list," and the effect statement, "this

loops through the list." The firs» is the statement of an intention, not an assertion of ■

result that has been achieved; as such, no attempt is made to checK its accuracy. The

effect, (i) on the other hand, is a statement about what the programmer believes code

actually does. Even without actually having the machine execute the code, the

programmer can double-checK this statement by making a second pass through the code

himself. In protocols of programming behavior, this distinction between planning

(i) If the plan is a very complex one, it may happen that the programmer attempts

to verify, while seemingly still in the middle of the planning process, that some part of •

plan does indeed achieve an effect that some other part of the plan requires. If the

reasonable assumption is made that what actually takes place is a brief coding episode

in the middle of planning, this kind of behavior is also consistent with the intent-effect

distinction.

17

a^u——^-—

1

ttatements of intent and coding statements of effect appears clearly enough ao that It

mey be u««d to Identify which of the two processes is taking place at a given point.

An example of a complete symbolic execution cycte for the problem ju«t mentioned

might start with ttie plan element, "test each number to see if it's odd." For a FORTRAN

program, the programmer would begin by wrftrng DO 10 1-1,100 and assigning it the

effect, "this loops through all the numbers." Oven this effect end the plan, the

programmer might next write IF(L(I)/2»2 .NE. L(I)) GO TO 20 and then assign It the

effect, "this ';ests whether its odd and goes to 20 if tt is." Finally, after closing the DO

loop by writins, 10 CONTINUE, the programmer woufd summarize the effect of all thre«

lines as "this loops through all the numbers and tests each one to see if its odd." Since

this matches the plan element, program writing would proceed to the next plan element.

An elternative possibility in this example illustrates another aspect of symbolic

execution. Suppose the programmer had Known only a test for even parity. Since it

was the only parity test available, he might have written IF(L(!)/2*2 .EQ. L(I)) end

assigned to it the effect, "thfs tests whether its even." Noting that the plan requires the

opposite effect, he would then alter "EQ." to "NE." to obtain the test for odd parity.

The general principle illustrated here is that, confronted with erroneou« code, the

symbolic execution proc»ss attempts to patch or modify it to obtain the desired effect.

This patching or modifying behavior is one of the main characteristics thet

distinguish symbolic execution from the sort of goal tree building and backtracking

behavior seen historically in programs such as the Logic Theorist (Newell and Simon,

1972) and, more recently, in systems tuch as PLANNER and C0NN1VER (Hewitt, 1971»

Sussmen & McDermott, 1972) These systems rely heavily for problem solving power on

the ability to backtrack to a previous, successful position. In symbolic execution, on

18

—

1

the other hand, attempting to modify or add on to w'ntt had already been done takes

precedence, and backtracking is an infrequent event.

When back.-acking does take place in coding, it may occur at several levels. In

addition to attempting to code the plan element in an alternative way, it may be decided

fiat it is the plan which is at fault. When this happens, a return is made to the planning

process, and an attempt is made to find a plan or piece of plan which is easier to code.

This new attempt in planning may even require a return to the understanding process to

re-interpret the problem. If the understanding process is considered to be a "top" level

process and the coding process a "bottom" level one, then this ability to backtrack to

the planning and understanding process represents a "bottom-up" process, and both

bottom-up and top-down processes take place in programming.

1.3 The Design Task Nature of Programming

In relating programming to other tasks which have been studied within the theory of

human problem solving, it was stated that programming differed from other tasks of

similar proportions in that new knowledge elements and operators were introduced

continuously during the course of problem-solving. This design task nature of

programming can be deriveo by two independent lines of reasoning based on two

different aspects of the processes described in this theory. First, the recursive

interaction among the three processes makes it impossible to represent fhe entire task

in a single problem space. Even if each of the three processes can be represented

compactly as a problem space, the union of these spaces would contain too many

different operators and knowledge elements to fit withir the problem space definitior.

A second argument for the design-task nature of programming is that both the

planning and code generation processes have characteristics which make their

19

m"w " |M B^«^^^^—*■ ' ■" ' ' '^^^m^^mm^^mmm^m^^mimmmmmm^^^rmtßwnimm^^m^m^mm .immmm ■'■p^w^aji ■■.! i in vwNvw^^^mvpw • ..P. in ■■ - ■—-—

1

representation as problem spaces extremely unliKely. In the previous discuealon of

planning, two general classes of methods for the construction of plans were presented.

The first class of methods involved rapid, recognitk)n-HKe processes. Behavior

produced by these methods might posstoiy oe fit into a problem-space characterization

since they could Involve classifying problems using onty a few basic elements and then

generating the plans using a small set of operations. The fit of this characterization

would, however, | robably not be a very good one, since some of elements and

operators would only be used once in given situation. For the second set of mftthods,

the situation is even worse. Use of diagrams, playing with examples, etc. are behaviors

which would be very difficult to handle using a closed set of operations and Knowledge

elements. For methods involving use of Knowledge from other domains, m particular, a

«ingle, small set of operations and Knowledge elements will be plainly unsatisfactory.

Since most of the methods which maKa up the planning process cannot themselves be

represented in problem spaces, it is clearly impossible to represent the entire process

this way.

The unsuitability of problem-space representations for the code generation process

is derivable from the way in which sequences of code are created. As each piece of

code is laid down, the effects or consequences that are assigned to it serve as part of

the invoking conditions for laying down of the next piece. An alternative way to

express the same process is to consider the plan element and the effect of a previous

pieces of code as together constituting a sub-problem for the creation of the next

piece. A recognition process generates the required code to solve the sub-problem,

end the efiects assigned to this new code serve as part of a new suo-problem. From

this perspective, code generation involves the statement and immediate solution by

20

^^^wwmm i w^^^mmam

1

recognition of a huge number of sub-problems. Representation of these problems and

their solution in terms of a small, closed set of operators and knowledge elements is

impossible .'or most coding behavior, ruling out the use of problem spaces to model

coding behavior. Thus, since both the planning «nd coding processes cannot be

represented as problem spaces, an overall problem-space representation for the

programming tasK is not possible.

1.4 Overview and Forward

The theoretical framework presented in this section is a complex one; it specifies

three major pro^sses, each of which may have a unique internal structure, which can

interact extensively with each other. In order to verify this framework against

experimental data, it would be necessary to completely specify the internal structure of

all three of the processes and to spell out precisely the way they interact. Doing this

specification and verification for the complete framework would involve unavailable

resources of time and experimental effort. Therefore, tLs work will focus on

presenting a complete model and verification for only one of the three processes in the

theory, coding.

21

 - — -

w^fg^^i iiiiiiiiiim i^mw^v^iwn i» ■■ WWW^^^^^V^HW^^^W-^MOTII»1 «i 1-1"1 ""IP ■■N«^p»^i«wifwii«iwi ■ HIIHV^^^V .■ipMip.«.iiia

A Data BM« for Tttttng ihm Theory

In this section, the experimental situatton and dcta used to develop and verify the

model of coding will be presented. Whrte a more conventional format would be to

present this information after presentation of the model, presentation he"» has two

advantages: it will make understanding of the model easier by giving readers an actual

situation to refer to, and it permits some further explication with reference to an actual

programming situation of a few aspects of the framework presented in the previous

chapter. (Readers who find the conventional ordering more comfortable may read the

next chapter before reading this one.)

The data on which this demonstration is based consists of behavioral records of ■

programmer writing and debugging 23 short programming problems. (Even though the

theory does not include debugging behavior, the subject was asked to debug the

programs, both to collect the data for possible future use and, more important, to insure

that they were under the same sorts of constraints in writing the programs that they

would be under outside the experimental situation.) The 23 problems were created

both to be similar enough so that the same behaviors would be repeated in different

problems and to differ enough to minimize learning effects across problems.

Additionally, they each had to be short enought to be written and debugged in a 2 hour

period.

All the problems involve manipulations on an array, L, 100 in length, filled with

random integers. For the first subject for the first 8 problems the numbers lay In the

range, -10000 to +10000; this proved somewhat difficult to read in print-outs so that

22

w^m^ßimwmr^mmrmv

the range was changed to -1000, +1000 for the remaining data collection. A second

arrii/, M, also 100 long, was provided to be used for indicating certain information about

L. Each problem was given a proper name (e.g. LARRY) to avoid any Inference of

ordering among them. The problems are listed in Appendix 1.

Subject instructions were to write and debug each of the programs in FORTRAN

and to talK aloud about what was being done. Since FORTRAN as a programming

language is currently in disfavor with much of the computer science community, a few

words of explanation for its choice in this study are in order. FORTRAN was selected

because it is probably the most widely "understood" programming language, and its use

guarantees understandability of this study by readers unfamiliar with PASCAL, ALGOL,

LISP or a host of other languages whose use may lead to superior programming

practice. Use of one of these other languages would certainly have lead to different

programmer behavior than that observed with FORTRAN, if for no other reason than

that different languages have different syntax; however, there is, as yet, no reason to

believe that this different behavior would require different mechanisms than those

already in the theory.

While worKing on these problems the programmer could use both paper and pencil

and a 10 character-per-second, hard-copy computer terminal connected to an

irteractive computer system with which the programmer was familiarj alternation

between the two could be made as desired. His behavior was recorded via a throat

microphone and a video tape recorder with the camera placed behind the subject.

These recordings plus the written materials and the computer terminal output provide

the basic data on which this study is based.

For each program, the programmer was given a printed description of the problem

23

■^■■■^■VIR1»^ ""■" ■"'I ••'""

to be programmed and a copy of the general instructions. Whenever he was ready to

enter the program into the computer he was given the narne of a file on »he computer

system containing the necessary instructions to read the data into to the L array, set

the M array to zeroes, and write out the L and M arrays at the end of the program.

The subject employed in this study was a very e«perienced programmer. At the

time of this study he was a graduate student in computer science at Carnogie-Mellon

University. Prior to serving in (Ma study, he had more than 10 years of programming

experience. This included writing LISP interpreters for the Control Data G20 and Univec

1108 computers, writing an assembly system for the Univac 1108 in FORTRAN, and work

on the 1108 ALGOL compiler. He has written substantial programs in FORTRAN, ALGOL,

LIS» SNOBOL, IPL-V, APL, and BASIC as well as several other, less-known languages

and dialects. He had been employed as a programmer by Carnegie-Mellon University,

International Business Machines, and the National Bureau of Standards. Finally, from fall

of 1969 through the fall of 1972 he taught introductory programming courses at

Carnegie-Mellon University.

The programmer was paid 12.50 per hour for his time and worked in sessions of up

to 2 hours in length, the length of any given session being determined by the

programmer. With the exception of the 15th problem, problem KEVIN, each problem

was completed in a single session.

To those not familiar with the information-processing approach to problem-solvif^,

use of only a single subject may require a few words of explanation. The information-

processing theory of problem solving regards behavior as highly history dependent; any

single piece of behavior can be understood only in terms of it own perticuler

precedents. For programming in particular, averaging across the behavior of sever»

9A

■

 ül

individuals would obscure these precedents. An appropriate research design for

studying programming must, therefore, be based on examination of extended sequences

of behavior. While, ideally, this should be done for a wide range of individuals end

situations, constraints on resources have limited this study to a single individual.

2..1 Preliminary Processing

The video tapes were prepared for analysis by transcribing them into written

protocols. The transcription was performed by a single listener (the experimenter) and

was done in two major passes. The first pass transcribed the spoken information onlyj

lines from this pass in the protocols in Appendix 1 are proceeded by an "S." The second

pass was used to extract information from the visual record, such as writing behavior,

etcj lines from it are prefixed with an "A."

The breaking of the spoken information into line« in the transcription was made

according to two rules: First, a break was made whenever the subject paused, even if

the pause was in the middle of a word or phrase. Second, if the speech was relatively

continuous, breaks were made between major clauses. The segmentation into lines in

the protocol is, thus, a rough indicator of low-level behavioral units in problem solving.

2..2 Times

Timing information was obtained using the digital counter on tho video tape

recorder; the times are accurate to .37. (an absolute error of 5 seconds in a 25 minute

protocol). They are given in Table

2..2.1. In addition to total time, separate figures are given for writing and debugging

time. Writing time was defined to be the length of time from receiving the problem

description until the program was executed or compiled for the first time. (Another

25

-

possible •Iternttive, time umii he subject begar typing in the program, was not used,

since the subject occasionally began typing in the program before he had completed

writing it.) debugging time was defined a« the time from first execution until the

•ubject asserted the program was operating correctly. The problems took • mean of

25.9 minutes to write and 15.0 minutes to debug for a total problem «olving time of 40.9

minutes.

This is equivalent to an average of 4.9 seconds per line of protocol for program

writing.

Table 2..2.1
Writing and Debugging Times for the 23 Problems

(in minutes)

Problem Writing Debugging Total Ratio Lines
HENRY» 19.2 11.1 30.3 1.7 -27
DAVID 55.8 4.4 60.2 12.7 43
WILLIAM 25.0 4.8 29.8 5.2 20
JOHN 27.5 10.2 37.7 2.7 12
PETER 6.4 8.7 15.1 0.7 9
CARL 13.1 5.3 18.4 2.5 9
BRIAN 43.7 11.3 54.9 3.9 23
PAUL 39.1 22.2 61.3 1.8 26
STEVEN 18.1 3.9 22.0 4.6 25
RALPH 22.9 25.6 48.5 0.9 17
RICHARD 13.3 3.0 16.2 4.5 10
ROBERT 22.2 12.7 34.9 1.7 26
HAROLD 42.3 55.4 97.6 0.8 35
DONALD 35.7 10.3 46.1 3.5 26
KEVIN 66.0 73.9 139.9 0.9 74
GERALD 60.4 36.8 97.2 1.6 65
FRANK 9.8 4.4 14.2 2.2 13
LARRY 44 4.9 9.2 0.9 10
LEE 24.0 17.5 41.5 1.4 30
PHILLIP 17.2 12.7 29.8 1.4 21
SAM 5.2 0.8 6.0 6.9 9
ALLAN 3.8 1.6 5.4 2.3 10
OSCAR 20.4 2.9 23.3 7.1 21

Means: 25.9 15.0 40.9 1.7 24.4

26

1 ^mimim9m^mm^mm*mmmmmmm^^**^^~*^^*'^rT*^'^*^'^*'**m^mii^*m^*^mmmi^^^^*i^m

2

Several things are noteworthy about these times. The first is the wide range of

values for writing and debugging times. Extreme values differ by almost an order of

magnitude. Since the problems were designed to vary moderately in degree of

difficulty, it is of interest whether the observed differences in times are a product of

problem difficulty or whether they have some other source.

One possible measure of actual problem difficulty is the number of lines of code

required to do the problem. It is an imperfect measure since both inefficient solutions

and certain unusual problem characteristics may lead to inflated values; however, for

this problem set and programmer, the measure is probably a useable one. It correlates

.69 and .75 with writing and debugging time respectively. While these are substantial

and indicate a strong relationship between problem difficulty and writing and debugging

times, they still leave a considerable portion of variance unaccounted for. This misting

variance, of course, represents differences in program writing difficulty that are

disproportionate to the number of lines in the program.

A second noteworthy point about the times is the correlation of .69 between

debugging and writing times. This is, again, a substantial correlation; it indicates that

problems which take a long time to write also take a long time to debug, a conclusion

also made in other studies (Youngs, 1970). As in the previous case, the correlation Is

still considerably less than one, suggesting that there may be sources of difficulty in

debugging which are independent of difficulty in problem solving.

Finally, there is a high ratio of writing to debugging time. The median ratio Is 1.7 to

1 and only 5 of the 23 ratios are less than 1 to 1. Other studies have found that

debugging time almost invariably exceeds writing time, occasionally by as much *t 4 to

1 (Youngs, 1970; Rubey, 1968). It is difficult to pinpoint the cause of this difference,

27

'■ ■ I I ■ I II ■ÄW—— II 11 1 ■ ■■

but possible explanatiorr might include the high SMII level of the subject, the neture of

the problems, end the availability of "canned" code for doing input and output.

2..3 Verifying the Process Structure

Using the following set of criteria, the occurences of each of the three proceasea

were Identttled in the protocols. (The complete set of classifications la ahown In

Appendix 3.)

Understanding

1. Reading the directions or problem statement.

2. Questions to the experimenter about problem interpretation.

P annlng

1. Material, up to the writing of lines of code, which follows phrases such
as "the way 1 wojld do this would be to " or "that seems similer to
another problem I did" and which consists of a statment of a general
solution to the problem, usually in terms which don't refer to a specific
programming language.

2. References to Knowledge domains outside that of programming, for
example, an inquiry into the mathematical properties of prime numbers.
While this sort of inquiry is usually part of the Understanding process, it may
also take place in situations in Coding situations in which the programmer
clearly already understands what is desired of him, but in which the
edditional knowledge from the outside domain Is necessary to selecting e
method.

3. Coding in a language other than the one in which the program will finally
be written if no attempt is made to check or verify the effects of these
lines of code.

Coding

1. Statements of an intent to generate code, such as "now I need e DO loop."

2. Statements of code being generated.

3. Statements of the effects of code that has been generated, particularly
the assignment of hypothetical or symbolic values and the "execution" of
the code for these values.

. ..

i vi" "iii immmma

Item 3 under Coding requires an additional word of clarification. In protocols, PAUL

and STEVEN, the subject first "solves" the problem in a pseudo-ALGOL. While it may

seems as if this behavior ought to classified as Coding, it is, in fact, better classified as

planning behavior. The code that is written this way consiits only of outlines of main

structures with few or no details and with many departures from ALGOL syntax into

natural language statements. Additionally, phrases, such as "what I want to do Is"

followed by a statement of a line of code, indicate that what is being stated are the

programmer's intentions, rather thar effects that have already been achieved. For this

reason, this coding in an alternate language is classified as part of the olanning process

(i).

To clarify these rules, the following example from problem RALPH is presented.

(This protocol was selected at random from those not used in other analyses; the

program writing portion of it is given in Appendix 2.)

Problem RALPH
1:17

This segment consists of first reading the problem directions and then

asking the experimenter for clarification. It is classified as Understanding.

18:96

Line 18 is "well, I'll do it the same way" and what follows up to line 28

is a statement of two possible alternative general solutions. From line 29

(i) A second argument that this behavior is planning, not coding, is simply that there

is otherwise no justification for the extra effort required to write the program first in

one language and then convert it to another language, particularly when the subject

has had considerable experience programming in the final language

29

IPHmmmmamHu ' ' ' ^-r^mmrmui - ■ ^^ .-.,. ,., ,,—

to lines 96, the subject inquires into the properties of prime numbers. The

whole segment is, therefore, r'assified as planning.

97:180

This whole segment consists of alternation among (1),(2) and (3) under

Coding.

The following table gives some summary statistics about this classification for all 23

problems.

Table 2.3.1
Process Occurs Aver. Time (Sees.) t Time

Understanding 1.39 101.4 6.9
Plenning 1.91 313.4 21.2
Coding 1.87 1060.5 71.9

The Occurence column contains the mean number of times per problem the process

in that column occurred in the 23 problems. The Aver. Time is the average total amount

of time spent in that process in each problem. The % Time heading gives the percentage

of the total program writing time spent in that process across all problems. Times were

calculated by multiplying the number of lines by the time per line.

Note first that Planning and Cod-nr, occur about twice per problem where

Understanding takes place a bit more than once. Note also that Coding accounts for a

huge amount of the total time spent on a problem. Using this information, a good

characterization of the problems in this study would be that the problems are easy to

understand and the programmer can easily find a solution method for them. This

method, however, requires considerable work to actually Implement.

30

11 1

A Mod«! of Coding Bohtvior

3.1 Introduction

As mentioned at the end of the first chapter, the focus of this work is on a model of

the coding process to be applied to the behavior seen in the protocols. The model has

been implemented as a computer program written in the University of Californit at

Irvine dialect of the LISP programming language (Quam & Diffie, 1974; Bobrow, Burton &

Lewis, 1973). The program runs on the Carnegie-Mellon University Computer Science

Department Digital Equipment Corporation POP-10 system. Except where reference is

made to specific programming conventions, "model" and "program" may be considered

synonymous for the rest of this discussion.

Since the model is intended to cover only coding behavior, the program operates as

a theory of behavior only for segments of protocol which meet the criterion, discussed

in the previous chapter, for being classified coding. For these segments, the program

is a theory of behjvior in two respects:

1. It generates code in the same order as does the subject in the

protocols; in particular, it makas the same sort of corrections and

modifications to code as he does.

2. The knowledge state of the program - the information the program

contains about the status of the solution to the problem - changes in the

same fashion as is seen in the protocols.

This chapter discusses the basic mechanisms and data structures selected for use in

31

^mMaMH^^*«^^*««^^*-■»< ■ >• wmm" ■ i- i i ■■■imi->wii-«i >^ ■» ■ 11 m^mvmwm^mwm m« > ^ i ^t ^^tm mim wm m< - ma man H^II ■ i.i.BMiM.iiniii ■■■ mwm**m^*^Wm

the model and discusses the psychological rationale for each selection. The suceedmg

chapter applies the model to some of the protocols! chapter 5 examines the

psychological assertions that the model as a whole makes and presents additionti

evidence for them.

3.2 General Structure of the Model

The theory of human problem solving in which this theory of programming is

embedded provides a framework for the structure of problem-solving models. Thts

framework forms the basis for the structure of the model presented here; It includes

two memories, each with unique accessing and storage characteristics, an overall

control structure, and several elementary processes which serve as primitives for

building larger-scale problem-solving activities. The following section is a discussion of

this general structure.

The memory structures specified by the framework are a short-term memory (STM)

and a long-term memory (LTM). The short-term memory (STM) has a fixed capacity of

a smell number (less than 20?) of chunks or symbols "each of which can desinnate en

entire structure of arbitrary size and complexity In LTM" (Newell and Simon, 1972 ;

p.795). Read-write time for STM is very short, perhaps on the order of a tenth of •

second. During the course of normal problem-solving behavior, information rarely stays

in STM more than a minute.

In contrast, long-term memory (LTM) is assumed to be very large or infinite In

capacity. Write times are on the order of 5-10 seconds while read times on the order

of a tenth of • second. No information is ever actually lost from LTM, but It may

become inaccessible in varying situations for varying lengths of time.

Though they may not be needed at ail in solving some types of problems, mention

32

wm:^mmm*m*wm~nmmi^immi^mim^m*i^**mim*^*m***rmmtmiinim*^^*mim^mmmvm**^<*^~~ '

should be made of the system's ability to make use of external memories (EWs). EM'S

include such things as blackboards, paper-and-pencil, switch settings, or even the

arrangement of physical objects, such as the use of paper cut-outs in a furniture

arrangement problem. For the subject in this study, the paper on which he wrote his

programs and the terminal print-out served as EM'S. Read times were a function of the

subject's reading speed and were probably on the order of 1-5 milliseconds per chunk

(based on a reading speed of 200-1000 wpm. with each word a chunk). Write times

depended on the subject's writing and typing speed. An approximate range would be

200 milli-seconds to 1 second per chunk, if a chunk is considered to be a five letter

word and typing speeds are 60-300 wpm.

The permanence of information in this EM depends on two things: thi continued

availability of the paper, and the availability of appropriate access information in STM

or LTM The latter is particularly important, since without some way to find where on

the paper information 's written, information may be lost as effectively as if it had

been erased.

The use of these EMs is a powerful tool in problem-solving; indeed, most of these

problems could not be solved without them. Their advantage is that they permit the

storage of information, such as code that has been written, that is needed only

temporarily or infrequently without either the loss problems of STM or the Interference

and access problems of LTM. Additionally, they may offer faster and easier information

entry and retrieval than LTM does.

Problem-solving in the theory is controlled by a production system. A production

system consists of a set of pairs of conditions and actions to be pe-'ormed when the

conditions are met. An appropriate resolution principle is employed to insure that only

33

- ■-■-.

r ^

one set of actions is taken at a time. Executing the actions results in some change in

the state of the world so that as the system operates different conditions are met end

different actions are invoked. None of the aoHons mvoive explicit branchingi rather, all

control is accomplished through differences In the meeting of conditions and the

execution of associated actions.

The production system in the theory is a part of LTM; the conditions it is sensitive

to are the presence or absence of certain information in STM. The actions taken when

conditions are met change the contents of STM. The theory asserts that the production

system is the only internal control mechanism for determining the course of problem-

solving; an extensive defense of the suitablity of this particular control structure for

modeling human behavior is given in Newell and Simon (1972; p.804). Part of this

defense is quoted here:

1. P production system is capable of expressing arbitrary calculations. Thus it
allows the human Information Processing System (IPS) the informetion
processing capabilities we know he has.

2. A production system encodes homogeneously the information that instructs the
IPS how to behave. In constrast, the standard control-flow system divides
program information into the content of the boxes, on the one hand, and the
structure of the flow diagram on the other. In a production system this division
does not exist, except to the extent that the ordering of productions carries
additional information. Production systems are the most homogenous form of
programming organization known.

3. In a production system, each production is independent of the others - a fragment
of potential behavior. Thus the law of composition of production systems Is
very simple: manufacture a new production and add it to the set. This
arrangement provides simple ways for a production system to grow naturally
from incremental experience.

4. The production itself has a strong stimulus-response flavor. It is overly simple to
identify the two constructs, since productions also have additional properties of
mafching, operand identification, and subroutine calling that are not apparent in
any of the usual formulations of S-R theory Nevertheless, productions
might well express the kernel of truth that exists in the S-R position.

34

 ,

_. »Ill I

5. The productions themselves seem to represent meaningful components of the
total problem solving process and not just ood program fragments. This is true
in part because we, the scientists sought to define them that way. Nonetheless
it remains true that such an organization of meaningful pieces describes the
data. . .

6. The dynamic working memory for a production system is the STM (i.e., the
memory on which its productions are contingent, and which they modify.) This
conception fits well the functional definition of the STM as the collection of
information of which the subject is aware at any moment of time. This is not the
case with most other program organization schemes . . .in which the relation to
directly defined psychological constructs, such as STM is not clear. All these
other organizations contain implicitly an unknown amount of machinery that still
requires psychological explanation.

For a production system it remains to specify the matching, the operand
definition, the subroutining, and the sequential flow of control on the action side.
All these seem amenable to explanation. For instance, each production may
possess only a single action operator. In such a scheme the hypothesized action
sequences . . . would simply be our short-hand for an iteration through STM in
which the output of the first production includes a unique symbol (a linking
symbol) to identify the next stage of the action sequence. In this view, the
subroutine pointer stack consists of the linking symbols in STM In such a system
almost all the program control apparatus is assimilated to the structure of STM.

In all events, the gap between program organization and the experimental
psychology of immediate memory and processing seems smaller for production
systems than for other program organizations.

7. There is an intriguing possibility that a production system offers a viable model of
LTM. Possibly there is no LTM for facts distinct from the production system -
that is, no basic distinction between data and program; rather the LTM is just a
very large production system. If this were the case, the act of taking a new
item into LTM would be equivalent to creating a new production (or productions).

8. A production system, unlike some other programming organizations, offers a nice
balance between simulus-bound activity and stimulus-independent activity. The
productsoi system itself is totally stimulus bound if by stimulus one means the
contents of the dynamic working memory (i.e., STM). All coinnection between
two adjacent actions is mediated by the stimulus so defined. But this stimulus is
per se neither internal nor external, if we take the view that STM is •
combination of the internal short-term store and the foveal parts of the visual
field (plus of course the symbols that have just been stored in STM upon
recognition of other externaal stimuli). If the vast majority of the productions
executed are reactions to internally produced symbols, then the system will
appear not to be stimulus bound. On the other hand, if almost all productions
take as part of their condition an external symbol, then the system will appear
to be very stimulus bound. Thus, the overly focused nondistractable chai acter

35

of programming models is not a structural feature of a production
organization, but depends on the particular productions that the system contain«.

3.3 Implementation in the Model

In the previous section, the basic structures of the problem solving system, auch aa

the production system and STM, have been discussed in general termss the following

section« discuss the specific way they have been implemented in the present program.

3.3.1 Short-term Memory: Model Implementation

In the implementation that has been used for this model, STM consists of a fixed

number of ordered slots; when new elements are introduced they are placed into the

first slot, end each of the other elements is moved down one slot; the element that was

previously in the last slot is lost off the end.

During the course of development of this model the number of *!öU was set at 14.

Since this is greater than the classic figure of "seven plus or minus two" (Miller, 1956),

a word of explanation is in order. First, what is normally meant by short-term memory

«pan is the capacity for just the stimuli of the experiment; control or intermediate

information such as goal or sub-goal marKers, temporary variable values, or even the

experimental instructions, are not usually included. In this model, however, STM

contains plan elements, goals for other actions, and pointers to certain LTM structures

which are accessed throughout the course of problem solving. The greater number of

slots in STM is necessary to provide space for this information as well a« for material

more conventionally included in measurements of LTM size.

The number, I A, was selected because, during model development, it was the size at

which the system operated effectively. Selection of a size on the basis of evidence

36

MM^MmilMIII —— «' "• " >' ■■> '"■■ "^"

3

from within the protocols, such as forgetting which could be traced to STM overload,

would have been desirable. No such evidence was, however, available. This is to be

expected in a task such as this since, in the absence of experimental constraints,

subjects adopt strategies, which minimize the possibility of memory overload (Newell and

Simon, 1972).

Besides the introduction of new elements, two other processes alter the contents of

STM, element modification and rehearsal. Element modification consists of changing pert

of an element without altering its position. In rehearsal, an element already in STM is

moved into the first slot from some other position; the remaining elements are each

moved down one slot until the empty space is filled.

3.3.2 Production System: Model Implementation

The production system used in the model is one of the variants possible in the PSG

system (Newell, 1973). In this variant, the invoking conditions are always tested in a

fixed order, and the first production which is true is executed. Thus, no contention

problems arise if the conditions of more than one production are met.

The invoking condition for a production consists of a specification of one or more

items which must be present in STM ior the condition to be true. If a condition does

contain more than one item, then the items are treated conjunctivly, and all of them

must be pie^ont for the condition to be true. It is also possible to indicate (by

proceeding them with the special symbol, «ABSENT«) that items must be absent from

STM for the condition to be true.

Specification of an item as part of a condition can be done by giving the exact item;

alternatively, it is possible to use variables as part of the specification so that an item

can be described in general terms. Variables can be of two types; those which match

37

 — - —

^^W""""1 ■ ■

parts of items on the basis of their structure and those which match on the basis of

content. The first type of variable is indicated by the presence of the symbol«,

•ATOM«, »LIST«, »ANY«, and »REST», in the description of the item; for example, •LIST*

matches any list which occurs at the corresponding point in the item. The second type

uses the symbol, «CLASS«, followed by a list of information thai may appear et thai

point in the item specification; if it were desired to match either an A,B or C In the item,

then these three symbols would appear following «CLASS«. Using viriables of the first

type, a plan element such as "a PLAN-ELEMENT which calls for FINOing the FIRST

POSITIVE in the LIST OF NUMBERS" may be specified as "any element which begins

with a PLAN-ELEMENT." Variables of the second type permit specifications such as "any

RESULT, PLAN-ELEMENT, or GOAL which contains a FIND."

Matching within each individual condition proceeds on a first to last basis, and each

element in STM matches at most one element in the condition. This means that if the

condition is "an element which is a CURRENT-GOAL" and there are two elements in STM

which are both CURRENT-GOALs, then only the first of them will take part in the match.

The combination of first-to-last matching with the ability to state match conditions in

general terms has an important psychological consequence. Consider a situation in

which the subject is exposed to (CURRENT-GOAL FIND) followed by (CURRENT-GOAL

LOOP). Because STM has a first-in first-out structure, the two items would appear In

STM as:

(CURRENT-GOAL L0OP)>(CURRENT-GOAL FIND)

If the production to remember what the subject was il* /n last had as its invoking

condition, "anything which begins with a CURRENT-GOAL", then the subject would recall

(CURRENT-GOAL LOOP), not (CURRENT-GOAL FIND). Behaviorally, this can be Interpreted

as interference between the two items.

38

W^^VMIi^r* -""""■""«■■■•WPIPPPWP» •^n^m^mmmt^m^mmrmrr^^

3

With the exception of the COMPARE-EFFECT function, discussed in the section on

Processing Mechanisms, the action part of each production is an unconditional sequence

of operations. No branching takes place among them.

Figure 3.3.2.1 shows the action operators that are used in the productions and the

knowledge structures which they affect. (Most of these knowledge structures are

discussed m the next section.)

Action Operators and the Structures They Affect

Actions Structures

REHEARSE STM
REPLACE STM
NEW-ELEMENT STM
NEWMEANING MEANINGS
GETMEAN1NG MEANINGS
CODE-GEN STM
ADDCODE CODE
MODCODE CODE
COMPARE-EFFECT

Figure 3.3.2.1

STM

An example of an actual production used in the system is:

NEW-CODE-1.

CONDITIONS:
1. (NEW-CODE »ANY»)
2. (CODE)
3. (OLDCODE)
4. (PLAN-ELEMENT »REST»)
5. (MEANINGS)

DESCRIPTION OF ACTIONS:
1. REPLACE (NEW-CODE »ANY») BY (ADD-ON »ANY»)
2. REHEARSE (CODE)
3. REHEARSE (PLAN-ELEMENT »REST«)
A. REHEARSE (MEANINGS)

39

HPMPHWW^MaaPBHHmmVWW mail • ■ • i. «"»i ii^^wn^l III I I I i

3

The CONDITIONS are patterns for items which must be present in STM tor the actions to

be taken. A complete ,;ct.ng of all the productions is given in Appendix 5.

3.3.3 Other Long-term Memory Structures

The power of production systems as a programming device and their psychological

relevance suggest the attractive possibility of constructing the entire model as ■ single

production system. This approach has not, however, been followed here for this reason:

For the model to accurately reflect behavior, the contents of LTM must be modifiable

both within a single problem and across problems to reflect the changes in knowledge

caused by• such things as the creation of new code-variables, (i) assigning effects to

new code, and the construction of new plans. While a production system which could

modify itself would have the necessary properties, the difficulties involved in building

productions which create other productions are extreme. Among the problems to be

solved are finding strategies for deciding when a new production is to be created, for

specifying what the conditions and actions of the new production are to be, and for

inserting the new production at the right place in the list of productions. There Is also

the programming problem of building a system which can modify itself.

Because of this problem, types of information which must be modified within a a

problem or across the problems in the set are represented in two structures outside

the main production system, MEANINGS and CODE. They are accessed via access

(i) Both the model itself and the programs written by the subject contain such

things as variables, expressions, etc. To avoid confusion, when parts of a program

written by the subject are being referred to, the terms will be proceeded by "code" as

in code-variable, code-expression or the general term, code-quantity. Use of these

terms not proceeded by "code" will refer to the model program.

40

11 ■ "III ■< I I I ■ 1 I I

functions called from within the production system; additionally, some of the processing

on these structures is done by special processing functions that are also called from the

production system. Both of these structures and their access and processing functions

are discussed in the following sections.

3.3.4 MEANINGS

As writing of the subject's progrart proceeds, a body of information about the

program gets built up. Some of this ■nformation is contained in the code itself, but much

of it, such as the meanings of code-variables and code-labols and the effects of pieces

of code, cannot be retrieved from the written code alone and is used over much too

long a time period for it to --emain in STM, at least in an un-encoded form. The

structure outside the production system that contains this information is called

MEANINGS.

MEANINGS is organized as a collection of attributes and their values, one set for

each variable or expression in the subject's code. Examples of the attributes include

the TYPE of the expression - with values of pointer, label, array, etc., and the NAME

that is actually used for it in the FORTRAN program, e.g., FRSTOD, L, I, or NEXT. The

values that these attributes may have can be either absolute or they can be defined

relative to another attribute or quantity. An example of an absolute value would be

FRSTOD for thp NAME attribute of a variable used as a pointer to the first odd number.

An example of the use of a relational value might be in defining the value of one

variable as being a pointer to another variable, as in a variable which means ."pointer to

the positions in array L"

Not all attributes are necessarily present for each code-quantity or even for all

code-quantities of the same type; while a LENGTH attribute would be used with ■ code-

41

1frm!^m***—^mmmmw* IHMIMIIHI ■ ■■■■■WMIIRI i. i i iiiniiiwin IM i I.II "■ 'M.P .U •* "^-—"■ ■-' ■

quantity of TYPE Vrty," (i) it would not be used for a code-quantity of TYPE "pointer"

or even recursively with another quantity of TYPE array. What determines assignment

of particular attributes to a code-quantity is whether use is made in the protocol of a

value of the attribute for the quantity; for example, a code-quantity of TYPE ARRAY

would have an attribute of LENGTH only if the length of the arrs/ were actually used in

the protocol.

Instead of assigning an attribute only if It was used m the protocol, en alternative

strategy would have been to define generic classes of quantities which each would have

a set of required and forbidden attributes; for example, a code-quantity belonging to

the class, <pointer-variable>, might always have the attributes, NAME and VALUE, and

never have the attribute, LENGTH. Whenever a code-quantity belonging to this class

was used in the model, all of these attributes would be given values and placed into

MEANINGS. Such a strategy lends itself to the sort of procedural embedding of

knowledge used in systems such as PLANNER (Hewitt, 1972); additionally, it probably has

considerable psychological validity, since it is a likely supposition that programmers do,

indeed, associate whole families of attributes with the type of a code-quantity. The

reason for not using it in this model is primarily one of research strategy: using generic

classes means that the attribute sets must be defined before the rest of the model is

built and that the whole model must be revised each time these sets are changed. The

strategy which has been followed, of adding attributes as they appear In the protocol, Is

(i) Readers familiar with the issue of "type" in progrmming languages should be

■ware thxi the attribute, TYPE, refers to the way in which the subject conceptualizes

the use of a code-quantity, not to its formal type. Under this usage, the attribute, TYPE,

might still be needed for modeling programming in a "typeless" language.

42

- -——»—*■ "■— - -

adequate for developing the rest of the model and does not require this constant

revision.

An example of an attribute that is frequently present for variables and labels is

called MEANS; its value is the type of information that programmer intends the variable

to contain or the location in the programming a label is represent. Thus, in a program

to find the first odd number in a list of 100 random numbers, there might be a variable

of TYPE "array," LENGTH "100," and NAME V with the value of MEANS being "random

numbers."

The attributes that are actually used and a description of their V6 ues are given In

the following table:

Table 3.3.4.1
Attributes Used in MEANINGS

Attribute Description of Values

NAME FORTRAN name used m program
TYPE Type of a quantity such as POINTER, LABEL, or ARRAY
MEANS Intended meaning of a quantity,

such as "pointer to odd numbers"
LENGTH Length of an array
BEGINNING Beginning of particular information in an array,

usually 0, since the information usually starts at
the beginning of the array

EXPRESSION Instantiated template
EFFECT An effect assigned to an instantiated template

At the lowest level, all access to MEANINGS are performed by two functions,

GETMEANING and NEWMEANING. These are used by the production system and by the

CODE-GEN and CODE-EL routines (described later) to retrieve and add information to

MEANINGS. The first of them, GETMEANING, taKes two arguments, the name of an

attribute whose value is desired and a list of other attributes and their values which

belong to the same set. Which particular information is included in ,his list is

43

3

determined by the call to the function, not by GETMEANING itself. GETMEANING then

searches MEANINGS for a set containing both the desired attribute and the known

attributes and values. If one is found, the value of the attribute is returned.

As an example of how GETMEANING works, consider a situation in which an array

called RAN, which contains random numbers, has already been used in the program.

Now it is to be used again, and the particular name, "RAN", which is used in the program,

must be retrieved again. In the protocots, this might be indicated by something like,

"Let's see, I need to use that random number array again. What did I call it?" Depending

on the situation, in modeling this behavior, either COOE-GEN or COOE-EL would Issue •

cell to GETMEANING. The first argument would be NAME, since it Is the name of the

array thet is needed; the second argument would be the list: MEANS-"random numbers",

TYPt-"erray." The function would return "RAN" as its value.

Additions or modifications to MEANINGS are made by the NEWMEANING Tuncuon

which is called as a direct action of the production system. The first argument is a list

of new attributes and their values which are to be added to the set for a particular

code-quantity. The second argument, if present, is a list of attributes and values that

already belong to the code-quantity set. The particular information present in this

second argument depends on which production calls it. The second argument Is used in

the same manner as the second argument to GETMEANING, to locate the ;et belonging to

a particular code quantity. Once the set is located, the attributes and values in the first

argument are added to it. Thus, in the previous example, if it were now decided that

the array in question were 100 elements long and this information were to be added to

MEANINGS, the call to NEWMEANING made by the production system would have as its

first argument, LENGTH-"100", and as its second argument: NAME-"RAN", TYPE-'array",

MEANS-"random numbers."

44

____^_

W^wi^^«pw^-^^^l^

To add an entry to mean.ngs for a completely new code quantity, NEWMEANINGS I»

called with no second argument. The attributes and values in the first argument are

then entered into MEANINGS as a new set.

In evaluating the psychological implications of this model, the first thing to be noted

is that, in retrieval of information about a particular code quantity, the quantity is

specified only by the list of its known attributes and values. This, in turn, implies that

information about the same quantity may be retrieved by a variety of different routes.

Given a quantity of TYPE-Vray", NAME-"RAN", and LENGTH-" 100", which MEANS-

"random numbers", the NAME may be retrieved either by specifying it as being of TYPE-

"array" and LENGTH-"100" or as MEANS-"random numbers" and TYPE-"array". This

ability to retrieve Knowledge via a variety of routes using whatever information is

hvailabte is a useful one for model ng a set of protocols since, in them, no single type of

Knowledge is consistantly used for retrieving information about code quantities.

The way in which code quantities are specified for retrieval also allows

representation of one common type of interference phenomenon. Suppose that several

different quantities have some attributes in common. If only a few of the attributes of a

desired code-quantity are specified and if these attributes are common to several code-

quantities, then the wrong code quantity may be retrieved. This provides a mechanism

for modeling those errors in which, out of several similar variable names or expressions,

the wrong one is selected.

3.3.5 Code: Basic Organization

CODE, the third major LTM Knowledge structure in addition to the production

system and MEANINGS, is information about how to access an EM, the paper containing

the code that the programmer has already written. For the following reason, it is quite

"^•mmm^mmmmmmmmmmmmmmmmmi^mfmmmmm^^^^i^^^immmimm^^-'^^^^^mt

3

likely that very little of the actual code remains accessible in LTM once It has been

written out on paper: when the subject in this study wanted to re-write or re-use

pieces of already-written code, longer than a Kne or so, he almost always had to find

and read the written code, indicating that he was unable to recall them directly from

memory. Any use, modification or correction to code which has been written muet

therefore retrieve the code from the paper EM; and the LTM must contain the

informatioo necessary to perform the retrieval.

Using a representation of eye-movements, an explicit model for retrieval from an EM

has been built for a seriation task (Newell, 1972). Since eye movement or other

perceptual data were unavailable, no attempt has been made to be as expHcit in this

case. Instead, a simplified structure for access to the wriUen-code EM nee been

assumed: it is always searched linearly and exhaustively, most recent code flrat. While

this is inaccurate for those situMions in which some sort of index into the EM is used, it

is reasonably close to the actual situation in many cases, and, in those situations In

which it is not correct, its effects on the model can be compensated for in other ways.

While CODE has been defined as a memory that gives access to the written code,

internally, it consists simply of a listing of the lines of code that the programmer has

already written. To be consistant with the definition given previously, each of these

lines should be interpreted as a pointer to the "real" line that the programmer has

written on paper. It can altered by two functions, ADOC00E and MODCODE, which,

respectively, add new code and modify existing code by replacing one piece of code

with another. Deletion of code is treated as a type of replacement. Retrieval of

information from code is done by a function, RETRIEVE-CODE, which uses informetton

from MEANINGS about the effects of code to accomplish retrievil; it is discussed more

fully in the section on Adding and Modifying Code.

3.4 Knowledge Representations in the Model

The preceeding section describes the basic knowledge structures of the model. The

following sectic. describes the way Knowledge is represented within these strjctures.

3.4.1 The Plan

According to this theory of programming, a plan consists of a sequence of functions

which must be performed in order to achieve the desired effect of the program. In the

model, a plan is considered to be part of the production system; pieces of it are placed

one at a time by a production into STM for coding.

In the protocols, a single, functional language is used to talk about both plans and

the effects of pieces of code. This is reflected with in the model by using a single

notational system to represent both. For ease of understanding, only the important

characteristics of this notation is presented here; full details are available In Appendix

4. The general form that plan elements expressed in this notation take is:

function to be performed> <oper8nds>

A few examples of actual plan elements, with explanations, are given below:

a. (ir ((EVEN PARITY) ((LIST OF NUMBERSKPOINTER (NEXT ODD)))
(GOTO (LOOP END))))

"If the element in list of numbers which is pointed to by the pointer fo»
the next odd number is even, go to the end of the loop"

b. (ORDER (LIST OF NUMBERS))

"Order the list of numbers."

c. (FIND-EXISTENCE ((FIRST POSITIVE) (LIST OF NUMBERS)))
(BEGIN! (OTHERWISE))
(SET (CORRESPONDING-ELEMENT (AUXILLARY ARRAY)

(VARIABLE (LOOP-INDEX)))
(VARIABLE (LOOP-INDEX)))

(END!)

47

-'^"^»W"WP!"^^^"WW»",W"^ ' ■ i iiiwmmm^^mm^m*mmm> j-m^mi~m^m*~mm^

(END! (FIND-EXISTENCE-LOOP-THROUGH))

"Loop through the list of numbers until the first positive is found. If a
numbers is not positive, then set the corresponding element of the auxiliary
array to the value of the loop index."

d. (FIND-AND-SWAP ((MULTIPLE) (LIST OF NUMBERS)
(VARIABLE (LOOP-INDFX)))

(ARRAY-ELEMENT (LIST OF NUMBERS)
(VARIABLE (INNER-LOOP-INDEX))))

"Loop through the list of numbers looking for multiple of the array-
element pointer to by the inner loop index"

The elements beginning with BEGIN! and END! are special marker elements. In some

situations it is necessary to indicate that a group of these items are to be performed

together; examples might be to show that all the items in the group belong inside the

same loop or th?t they are part of the same branch of a conditionel. For this purpose,

these special rrarker elements, named after the BEGIN and END in ALGOL, are provtdsd

which may be placed before and after sets of item to indicate that they belong

together in a group, (i)

A final comment about this notation as applied to pi» ,3 is that it makes no dbtinctton

between plan elements which lead to the generation of actual program code, for

example, "set the pointer equal to the index of the first odd number found," and thrive

which only result in the establishment of data representations, such as, "create •

pointer to ke^p track of the location of the first odd number." This use of a common

functional notation to represent both types of plan elements is true to the way both

types of plan elements behave in the protocol.

(i) This simple structure is adequate for all the protocols used in this study,

probably because the problems are simple ones; more complex problems may require

the use of sub-lists or trees to represent plans.

48

I « ■ B i ■ ■ ■ ■ I tw

3.4.2 Templates and Effecis: General Structure

Since the plan itself is presumed to be language-independent, the information about

the syntax and semantics of the language in which tie code is actually written must be

contained in the production system. For syntactic information, this is done by means of

structures called coding templates which are formally equivalent to a Backus-Normal

form definition of the language, using very high-level primitives and very few recursion

slots. Each code template consists of a small segment of code - at most 3 or 4 lines -

specified as a mixture of three types of information: (1) actual code elements; (2)

descriptions or specifications of rode elements that are to be inserted in the code;

(3)and parameter slots which will be replaced by descriptions or specifications of code

elements at the point when the template is actually used.

The actual code elements that appear in the template are primarily keywords and

separators in the particular programming language; for FORTRAN, examples might be DO,

GOTO, commas and parentheses. Descriptions or specifications are used for the names

of labels and variables, and for nested expressions; examples might be "label for the

loop scope" or "pointer to the first odd."

Parameter slots allow the templates to have wider generality by delaying the

description or specification of quantities until the template is actually used. An example

might be a template for setting two simple variables equal to each other; descriptions of

the specific variables would only be plugged in at the time the template was used.

When a code template is invoked in response to the content of a plan element, the

elements of it are processed one by one by a code generation function. Actual code

elements are handled by having them leave appropriate traces in STM and in CODE,

indicating that they have been added to the written program. The handling of slot

49

-

Jescriptions depends on whether the code-quantity or expression has occurred

previously in the program. If it has, then MEANINGS already contains the necessary

information about it, including its FORTRAN name; the name is then retrieved and treated

*s an actual code element. If it is not, then a goal is created for creation of the desired

code-quantity. After the goal has been satisfied and information about the code-

quantity or expression has been placed into MEANINGS, then its name is also used as

actual code.

In some cases what is described in the slot will be not just a simple variable name

or expression but a more extensive piece of code. When this occurs, another code

template may be invoked inside the first one, a process which can be nested arbitrarily
i

deeply.

A typical template for a DO loop might look as follows before the parameters are

plugged in:

DO "label for (parameter «1) loop" "variable for loop index" ■
"begins at (parameter «2) loop" , "ends at (parameter «3)"

If the loop were to be used to go through an array, the template might look as

follows with the parameters substituted:

DO "label for go-through-array-L loop" "variable for loop index"
■ "begins at beginning of L array" , "ends at end of L array"

Elements shown in bold-face, such as DO and ■, are actual code elements which will

be put directly into the final code. Quoted items are descriptions of variables or

expressions; to generate the final crde, the mechanisms that have been described

50

'' " ~ "

previously must be used to substitute the actual elements for the description. When

this is done, the code that is generated might look like:

00 100 1-1,100

As specified in the theory, an effect is associated with each piece of code as it is

written. This linkage is accomplished within the production system itself. As each

template is used, one of the actions of the production is to place a copy of it with free

parameters instantiated into MEANINGS under the property, EXPRESSION; the

associated effect is put under the property, EFFECT. When code generation from the

template is completed, the effect is retrieved and placed into STM. Since it is still •

part of the MEANINGS structure, the effect also remains available for retrieval on other

occasions, such as while checking code or doing initializations.

Since in the protocols, subjects use the same sort of functional language for both

plans and effects, as has been mentioned, the same notational system that was

described in the section on plans is used in the model for both. The primary

distinction that may be made between the two is one of content; effects are usually

much more specific as to where and how the function is actually accomplished. A few

examples of effects, with explanations, are given below. It is worthwhile to compare

them with the plan examples given previously.

a. (BRANCH-IF ((EVEN PA,RITYK(LIST OF NUMBERSKPOINTER (NEXT 000)))
(GOTO (LOOP END))))

"If the element in {he list of numbers which is pointer to by the pointer 'or the next
odd number was even, this branches to the end of the loop."

b. (ORDERED (LIST OF NUMBERS) (LABEL (ORDER-LIST-LOOP-END)))

"At the label for the end of the list ordering loop, the list is ordered"

c. (FOUND ((FIRST POSITIVE) (LIST OF NUMBERS))

51

^ -*. - -

f^vw
111 " ' ' ' l"1» 1^^^

(LABEL (POSITIVE FOUND))
(ARRAY-ELEMENT (LIST OF NUMBERS)

(POINTER (FIRST POSITIVE))))

"At the label, the first oositive has been found and is pointed to by the pointer.*"

3.5 Processing Mechanisms

The model that has been presented so far may be characterized as follows: The

individual elements of the plan, expressed in the functional plans-effects language, are

placed one by one (by a production) into STM. Productions then fire off which attempt

to convert these plan elements into to code using the information about language syntax

contained .n the templates. As each piece of code is created the production tystem

assigns to it an effect which may then serve as part of the stimulus for further

productions. Information about the actual written code is accumulated in an LTM

structure, CODE. Information about the meanings which have been assigned to variable»

and labels and the effects which have been assigned to code are accumulated in another

LTM structure, MEANINGS.

In the course of carrying out this cycle the production system uses five special

mechanisms which supply it information or operations that are not otherwise

represented in the model. The following section detcribes each of these mechanisms

and exptains why it is used.

3.5.1 Code Generation and CODE-GEN

The actual function of converting a template into code is performed by a fucntion,

CODE-GEN, which is called as an action by various productions. The use of a separate

function for this operation, rather than performing it within the production system, is

mora a consequence of the program structure than of psychological assertions of the

52

m^m*m*m inn. ii MMB^^n^ll^^^^^^^^^««^^^n^pMw»«wmBWam^^m^^"^OT^nM^^^mHP^^|IBV^^^muiiii i ■) ■• ■ m n i r^^^^^^^^^^wa^f

model. The encoding of a template requires a great deal of use of the information

conteined in CODE and MEANINGS. Direct retrieval from these structures by the

production system is involved and difficult to program properly; piecing these actions in

a separate function greatly reduced the effort involved in system construction.

COOE-GEN relies heavily on two other functions, PUTARG and COOE-EL The first of

these, PUTARG, is responsible for instantiating the parameters in the templates. It does

this on a purely positional basis, assigning the first value to the first parameter, the

second to the second, etc. The only check it makes on the values is that they

correspond in number to the parameters.

CODE-GEN takes as its primary argument an instantiated template and tries to

convert this template into code and return its associated effect. It begins operation by

taKing the elements of the template one at a time and passing them as arguments to

another function, CODE-EL If the template element is an actual piece of code, such as a

DO or comma then CODE-EL returns it unaltered. If the template element is a variable

or expression description, then CODE-EL attempts to use the GETMEANING function to

retrieve from MEANINGS the actual code corresponding to the description. M it

succeeds, it returns the code as its value. If the variable or expression is an entirely

new one, then actual code for it will not be present in MEANINGS. When this happens,

COOE-EL fails and returns NIL.

CODE-GEN accumulates the actual pieces of code until the template is exhausted or

until CODE-EL fails. When the former occurs, CODE-GEN places both the accumulated

code and the retrieved effect of the template into STM as NEWCODE and EFFECT

elements respectively.

If COOE-EL fails, then CODE-GEN takes three actions; it places the code that it has

53

1' ■-

accumulated so far into STM as a NfWCODE element; it creates a GOAL element in STM

for the template item that caused the failure; and it creates a CODE-GENERATION STM

element. The latter contains a copy of the template that CODE-GEN was encoding and a

pointer to the position in it at which the COOE-EL failure occurred; it's function is to

permit a return to generating code from the template once the goal has been satisfied

and is the equivalent of a higher node in a goal tree.

A fairly frequent occurence in the protocols is that the programmer writes some

new codr that is a modification or replacement for some code that has been written

previously. In most cases, information about the old code is still preseni in STM and can

be used by the production system to make the modification or replacement. In a few

cases, though, the old code has been written long enough ago so that the information

about It is available only in MEANINGS and CODE. CODE-GEN checks for this situation by

using a function, SIMILAR-EFFECT, which searches MEANINGS for similar, but not

identical, effects to the effect of the current template. "Similarity" is defined as:

1. Having the same verb as the current effect.

2. Having the sa.oe flrtl argument as the current effect.

When an old effect meeting these criteria is found in MEANINGS, CODE-GEN responds by

using a function, RETRIEVE-CODE, to retrieve the code that was generated from the

older template. A special element, (OLDCODE), whicn is . pointer to this existing code, is

then placed into STM along wUh each NEWCODE element. This OLDCODE element is used

by the production system to produce appropriate modifications of the older code.

A flow-chart of the operation of CODE-GEN is given in Figure 3.5.1.1.

bQ

mw^mi^—mr^—mmmimrmm

Flow Diatram for th« CODE-GEN Function

1. Get effect of template.
FAIL, there is no effect.

1.1 Report error and QUIT.
2. Gt-t next code element.

FAIL, there are no more code elements.
2.1 Test for accumulated code.

YES, there is some accumulated code.
2.1.1 Perform wrlte-out-new-code.

NO, there is no accumulated code.
2.1.2 Perform end-of-tamplate.

3. Repeat until failure occurs:
3.1 Call CODE-EL with the next code element as argument.
3.2 Add what CODE-EL returns to the accumulated code.

4. After CODE-EL fails, test for accumulated code.
YES, there is accumulated code.
4.1 Perform wnte-out-new-code.
4.2 Create a COPE-GENERATION element.
4.3 QUIT

NO, there is no accumulated code.
4.4 Create a GOAL element.
4.5 Create a CODE-GENERATION element.
4.6 QUIT

Wrtte-out-new-code.
1. Test if a similar effect already exists.

YES, it does.
1.1 Retrieve the code that went with it.
1.2 Set OLDCODE as a pointer to this old code.
1.3 Place an (OLDCODE) element into STM.

2. Place a NEW-CODE element containing the accumulated code
into STM.

3. QUIT

End-of-template.
1. Place any code conditions associated with the template

into STM.
2. Place the EFFECT of the template into STM.
3. QUIT

Figure 3.5.1.1

55

nni^wT^^a^^^^^OTVHHVp £«|HPHMMMimvr «■■•«■■^■rvwwi^n^w^lWinom

Psychologically, the way in which this system generates code has Important

implications. First, a goal for the creation of a variable or expression is generated only

if the information is not already available frow MEANINGS. The system is, thus, a taif-

modifying or learning one which alters its own behavior over time.

Second, in coding the elements of a template, the system proceeds In a strict, firat-

to-last fashion. Whenever a subgoal is created, whether from »he template itself or

from some prior subgoal, it is attempted ;mmediately. If any subgoal in a chain fails,

coding of the entire template fails Thi;s, there is no provision for defering goals, and

no back-up in a subgoal chain occurs.

3.5.2 Comparing Plans and Effects

comparisor, between a part of a plan and the effect assigned to code generated

from the plan is an important feature of this model. These comparisons are performed

by the COMPARE-EFFECT function. A plan element and an effect are considered to

correspond if:

1. Thr. function named in the effect indicates completion of the function
required by the plan. For example, LOOPED-THROUGH as an function in an effect
would indicate completion of LOCP-THROUGH in a plan. This correspondence is
determined from a table of equivalents in COMPARE-EFFECT.

2. The operands of the function in the plan must also be present in the
effect. Continuemg the example, if LOOP-THROUGH has LIST-OF-NUMBERS as an
operand, then LOOPED-THROUGH must also have the operand for the two to
correspond.

If a plan and effect meet these criteria, they correspond. Any additional details

present in the effect are ignored.

COMPARE-EFFECT is called as part of the action side of productions. Depending on

what it returns, either a MISMATCH element is placed into STM or both plan and effect

elements are marked as OLD. A non-branchmg production equivalent to the use of this

56

■ 1 ■ II

function would have been to do the comparison within tie produc'ion system. The

drawback of this approach is that it would have required a large number of very

specific productions; to avoid this, the branching function departure from a pure

production structure was used.

3.5.3 Rehearsal and the LOOK-AT-CODE Mechanism

Because of the first in - first out operation o' STM, the model asserts that STM

items which are not rehearsed are eventually lost off the end. To prevent loss of

needed information, either STM must be large enough so that an item is retained until

needed or a rehearsal strategy must be adopted which Keeps the item at the front of

STM. The conditions under which rehearsal take place are, therefore, important in

determining the behavior of the model for a given STM size. The basic prerequisite

imposed by the model is that -ehearsal of an item may fake place only when the

presence of the item is part of the invoking condition of a production; the rehearsal is

then accomplished as one of the actions of the prcduction. This approach has the

desirable property that knowledge in S^M which is actually used or "attended to" is

rehearsed and remains available over time while unused items are eventually lost -

"decay" - as a function of interaction.

While this mechanism works very well for most situations, it does run into difficulty

because of the structure of the CODE EM. If CODE were part of the production

system, then certain information would be rehearsed as a function of using it as part of

the invoking conditions of productions; for example, the information that a DO loop was

still open might be rehearsed by a production which caused the programmer to look at a

DO statement that he had written previously. Because CODE is not part of the

production system, either a very large STM must be used or a special rehearsal

57

^■'«■-»■f ■w^wp«piWi^*mm<wwp^nMm^n"^^WB'N ■ ■

3

mechanism must be provided. Since a very large STM might distort other parts of the

model, the latter (ourse has been followed.

The mechanism that has been selected is to provide a special STM item, (LOOK-AT-

CODE), whose presence is used to indicate certain accesses of the CODE EM. When it

occurs in STM the element may be responded to in two ways. One of these is to include

it as part of the invoking conditions for productions which rehearse appropriate STM

items, usually those associated with code that has already been generated; for example,

one such production would result in the rehearsal of any item associated with an open

DO-loop condition.

The other response to the LOOK-AT-CODE item is similar to Newell's (1973) CALL

operator. A production sensitive to the presence of the item calls a special action

element which results in an interruption of the program and the return of control to the

user's console. The user may then rehearse items or provide whatever other action»

. re necessary and then continue program execution. This mechanism is provided for

tnose situations in which behavior is dependent on the contents of the CODE EM and

which can't otherwise be included in the production system. An example might be

behavior which is caused by the programmer's noticing a certain variable name and

discovering that he has failed to initialized it. Since this mechanism is necessary only

for those few special cases, its use in the program is relatively infrequent.

As with all other STM element, LOOK-AT-CODE is placed into STM by the

production system. The production which does this must be sensitive to situations in

which it is likely that CODE EM has been accessed. The situation that has been chosen

is the completion of coding of a template. An alternative choice would have been to

invoke the production every time a new piece of code was generated; however, since

58

..... .

——-———'■-"——

creation of new bits of code is a very frequent event, this would have meant that the

program would hive spent most of its time processing LOOK-AT-CODE items and that

considerable space in STM would have been taken up by them (with the effect of

pushing other items off of the end). The effect of this compromise is a slight loss in

the sensitivity of the system to some of the finer aspects of behavior driven by the

contents of CODE. An example might be a case in the protocol in which an error is

made and responded to before the coding of an entire template is completed; because of

this compromise, the model would only be able to make the -erection after completion

of the entire template.

3.5.4 Modifying Code and HOW-MODIFY

The usual action of the production system as each new piece of code is generated is

to add the new code onto the end of the CODE EM using the ADDCODE function. As was

discussed briefly in the description of the CODE-GEN function, in may cases the new

code is intended to modify some previous code and is to replace the previous code or

be inserted before it. Indication that this is the case may come from the production

system (frequent case) because it has just discovered that a piece of code gives a

wrong effect or via the SIMILAR-EFFECT function in CODE-GEN (infrequent event). In

both ca»es the following process takes place, either within CODE-EL or as an action of

the production system: The effect of the older code is passed as the argument to a

function RETRIEVE-CODE, which uses GETMEANING to retrieve the instantiated template

which was useo to create the code in the first place. Once the template is retrieved,

RETRIEVE-CODE uses CODE-EL to turn the template into code again; since the code has

Keen created previously ai: the necessary information to do this is already in

MEANINGS. The OLDCODE element is then set as a pointer to this old code and placed

59

mwtmi\\ß.\ an ■»■in ii |i ■ |i ■■OT^wnw^Ma^wVMH^^^l I m mi i ii IH ■ m.wwwm ■ lai^ii«! Hlina. ■. -W.IB i i> « HMP«^)** HIM ■■ '"•- ' '• >*>

into STM. (The actual value of the identifier, OLDCOOE, is all the code in CODE up to the

piece that is to bo replaced or modified.)

To actually modify the code, a special function, HOW MODIFY, is provided.

Motivation for creation of this function was that there are many ways in which code can

be modified. If there is enough room, the new code may be inserted before the old

code; alternatively, the old code may be crossed out and the whole thing recopied. If

the old code is written lightly enough, he may just write over it. Because the action

taken depends on such things as how much space he has left on the page, how dark his

pencil lead was, etc., no attempt was made to simulate this behavior in the protocol.

Instead, as the newer code is created, a production sensitive to the presence of both

OLDCODE and NEWCODE elements in STM is fired. One of the actions of this production

is to call HOW-MODIFY which returns control to the operator's console so that he may

specify whether the new code is to be inserted before, replace, or be inserted after the

older code. Other productions then use this information to call on ADDCODE and

MODCODE to make the appropriate changes in CODE.

3.5.5 Generating Names: NEWQUAN

In order for the model to satisfy GOALS for variables and labels, it must have

available the FORTRAN names that are to be used in the program. The productions that

satisfy these goals obtain these names by calling the function, NEWQUAN. The first

argument to this function is the meaning of the code-quantity whose name is desired;

the second argument is the type of the code-quantity. A third argument is present only

if the code-quantity is of type LABEL. Since labels in FORTRAN are numbers, it indicates

the relative increment of the new label over previous ones.

In the protocols, the names given labels seem to follow a regular pattern. Labels

60

' HH' ' ! ! < —"

for loops containing only a few calculations increase by 10 for each new label; that is,

successive labels of this type would be 10.20,... Labels for loops containing many

calculations, particularly other nested loops, increase by 100. When labels of the first

type occur inside labels of the second type, they increase by 10 starting from the outer

label, as in 110,120,.... Finally, there are a few occurances of very large loops that

contain large sagmtntl of program inside them; they have numbers like 500,1000 etc.

To generate new labels, NEWQUAN maintains two counters, OLD-SMALL-LABEL and

OLD-LARGE-LABEL, which are, respectively, the values of the last small and large labels

to be used. When a new small label is requested, the first counter is incremented by 10

and the new value returned as the new label. Similarly, for a new large label, the

second counter is increased by 100 to get the ne*t label; at the same time, though the

small label counter is set to the new value of the large label counter so that any

successive new small labels will be larger than the new large label. Finally, for new

very large labels, 500 is added to the current value of the large-label counter.

Unfortunately, the generation of names for variable; by the subject is not nearly as

systematic as that for labels Instead of attempting to generate them, NEWQUAN uses

one of two methods to retrieve them. The first is to search NAMES-LIST, a list of

meaning-names pairs that is "plugged into" the program whenever these names will be

used. If a needed meaning-name pair I« not found in this list, then the second method

which NEWQUAN uses is to ask at the user's console for the names. The generation of

names is, thus, not really part of the model, but is effectively a parameter to it.

3.5.6 Symbolic Execution and the Structure of the Model

In the presentation of the theory in Chapter 1, it was asserted that creation of

program code was accomplished by symbolic execution; yet, the model just presented

81

'■ ■ mtmim WIN 1 ■ I 11 ■■

3

does not contain symbolic execution as an explicit construct - i.e., there is no single

routine that can be pointed to as the symbolic execution routine. Instead, symbolic

execution is present implicitly, as a function of the interaction of the routines and

structures of the model. This can be illustrated using the example of code generation

for the problem of printing out all the odd numbers ina an array. The plan for the

program might begin with "loop through the array." A production sensitive to th,' plan

would fire off which would retrieve an appropriate template, instantiate it, place

information about it into MEANINGS, and finally call CODE-GEN to code it. This process

is equivalent to the laying-out of code in symbolic execution. When the template is

coded, its effect is placed into 5TM, corresponding to the assigning of effects or

consequences in the theory Finally, the presence of the effect in STM serves as part

of the invokiing conditions for a production for the next step in the plan, corresponding

to the statement of the theory that effects or consequences of one piece of code are

used to generate the next piece. Viewed across the entire system, this example makes

clear that symbolic execution is an inherent property of the model.

6^

Application of the Model to the Protocols
Covelopment for Segments of the Protocols

Using the structures and mechanisms described in the previous chs">ter, the model

was developed to fit the coding behavior seen in segments of four protocols These

four segments were selected from the 42 coding segments in the 23 protocols in the

following way: First, of the 23 protocols, a set of 7 (WILLIAM, CARL, PAUL, ROBERT,

KEVIN, FRANK, ALLAN) were set aside for use in verifying the model; they were selected

because, as a set, they had approximately the same distribution of solution times as the

entire set of 23.

A second criterion was the . applied to the coding segments in the remaining 16

problems: All those segments which consisted primarily of symoblic execution of code

that had been written previously, as would be the case, say, in going back to do

initializations, were eliminated. The reason for doing this was that behavior in those

segments would depend heavily on retrieval from the CODE EM Because of the

simplified structure used for this EM, this would necessitate a great many calls to the

operator's console for information. Since the information supplied would have a great

deal of influence on system behavior, evaluation of the behavior produced by the model

alone would be made more difficult. From the segments remaining, the four segments

from four different protocols were chosen; particular selection were based on the

individual characteristics described in the discussion of each segment.

A single production system and set of templates (i) was used for all four segments;

(i) i.e., Some productions and templates are used in all four segments, though

there are idiosyncratic productions.

63

this production system and the templates are shown in Section 1 of Appendix 3.

Different plans were used for each individual segment. Additionally, at the beginning of

each segment, MEANINGS was assumed to contain only the information about the arrays,

L and M. The following section discusses the behavior of the system for the first

problem in complete detail and an overview of system behavior for the other 3

problems.

4.1 Problem RICHARD

Problem RICHARD was the eleventh program done by the subject. It was one of the

shorter problems in the set, faking only 13.3 minutes to write and 3.0 minutes to debug

and run. The problem was to find all the odd numbers in the array, place them at the

beginning of the array, and set the elements in M corresponding to the final positions of

the odd numbers to 1. The complete protocol is given in Appendix 2.

It was selected for modeling primarily on expositional grounds. The problem is easy

to understand, is not subject to many conflicting interpretations and is readily solvable

by most people with programming knowledge. The subject takes only a moderate

amount of time to solve it, and his solution in the protocol is quite eas! to follow. Since

it is an easy problem to explicate (though not necessarily to model) it was chosen as the

first oroblem to be modeled by the program.

4.1.1 Planning in the Protocol

Planning begins very quickly after the subject receives the problem description; it

takes plare in lines 8 through 12 of the protocol (i.e., about 30 seconds after he

receives ♦Ke problem description):

S8:G0 THROUGH THE ARRAY
S9:DETERMINE IF A NUMBER'S ODD OR NOT
S10:HAVE A POINTER TO THE LAST PLACE WHERE THERE'S NOT AN
SI l:TO- IF IT'S RIGHT AT THE BEGINNING THEN YOU KNOW HOW FAR YOU HAVE

64

S12:0N ODD AND HOW FAR YOU HAVE ON EVEN

Since this is the only identifiable planning behavior seen in the protocol, it is

assumed that planning was completed in this segment and that this same plan was used

without modification throughout the writing of the entire program. From this segment it

can be determined that the plan consists in part of looping through the array, testing

each number, and keeping a pointer to the last position at which a non-odd occurs. In

lines 16-18 he says:

SlSilT'S A POINTER FOR NEXT ODD
S17:NEXT ODD
S18:AND THE OTHER ONE IS JUST GOING TO GO THROUGH THE ARRAY SO

This indicates that the plan actually consists of keeping two pointers, one for the

position at which the next odd is to be placed and one which goes through the array

pointing at the next element to be tested. Finally, as he is checking over the program

in lines 52-59, he comments:

S52:SO THAT ALL ODD NUMBERS ARE AT THE BEGINNING
S53:PLACE ONES CORRESPONDING POSITIONS IN M
S54:AND THAT
S55:INITIALLY IF I EQUALS ONE
S56:THEN WE DON'T EVEN HAVE TQ WORRY ABOUT IT
S57:AHH, SO WE'I L JUST DO THAT SWITCH
S58:RATHER THAN TEST IT EVERY TIME THROUGH THE LOOP
S59:AND THAT JUST WON'T HURT ANYTHING

From these comments and from the code he cctually writes, it may be inferred

that, once he has found an odd number, he intends to increment the pointer to the next

odd, swap the odd number with the element pointed to by the pointer to the next odd,

and then set the corresponding element to 1.

Re-written as a sequence of actions to be performed, an informal statement fo the

plan would be:

65

1. Create a pointer to the next odd number, starting out at the beginning of the
array.

2. Loop through the array.
3. Test each element to see if its odd. If it Is,

Increment the pointer to the next odd.
Swap the element it points to with the element that was just found to be

odd, which was pointed to by the loop index.
Set the corresponding element in M to one.

The indentation of part of item 3 is used to indicate the subject's knowlndge that these

actions are to be performed only it the test is satisfied.

In the program, this plan is represented as follows (Each numbered item is a

separate element of the plan.):

1. (CREATE (POINTER (NEXT ODD}) (BEGINNING (LIST OF NUMBERS)))
2. (LOOP-THROUGH (LIST OF NUMBERS))
3. (IF ((EVEN PARITY)

(ARRAY-ELEMENT (LIST OF NUMBERS)
(VARIABLE (LOOP-INDEX))))

(GOTO LOOP-END))
4 (BEGIN! (NOT-EVEN-PARITY))
5. (SWAP-AND-INCREMENT

((ARRAY-ELEMENT (LIST OF NUMBERS) (VARIABLE (LOOP-INDEX)))
(ARRAY-ELEMENT (LIST OF NUMBERS) (POINTER (NEXT ODD))))

(POINTER (NEXT ODD)))
6. (SET (ARRAY-ELEMENT (AUXILLARY ARRAY) (POINTER (NEXT ODD)))

1)
7. (END! (NOT-EVEN-PARITY))
8. (END! (LOOP-THROUGH))

The (BEGIN!) and (END!) elements have the same significance as does the indentation in

the previous representation of the plan.

Interpretation of this representation is quite simple. The first word indicates the

general sction to be performed - SET, IF, SWAP, etc. Following it are the objects of the

action with all the information belonging to an individual object grouped together within

parentheses. Thus, (POINTER (NEXT ODD)) describes a pointer to the next odd number.

Elements of arrays require two pieces of information, the name of the array and the

66

——^____

name of the pointer indicating the specific element; for example, (ARRAY-ELEMENT (LIST

OF NUMBERS) (VARIABLE (LOOP INDEX))) specifies an element of the .rray containing

the list of numbers which is pointed to be a variable which is the loop index.

comparison between this representation of the plan and the informal one reveals

that, despite syntactic differences, the two both contain the important features of the

plan in this problem: both use an array as the primary data structure, two pointers to

keep track of positions in the array, and iteration construct to step the pointers through

the array.

Important to what is meant by a plan and by code generation in this model is what

this plan omits which the code generation process supplies. First, though trivial, the

plan has a different syntax and set of semantic conventions than does the final code.

Second, the plan omits any operations which are necessary to create, label, and initialize

data structures; in this case, the plan does not gives names to the array and the two

pointers nor does it provide the DIMENSION declaration which is necessary to use a

FORTRAN array. Third, the plan does not provide the mapping between the operations

that are to be performed and the available constructs of the language; in this example,

the plan provides no way of getting from the "swap" operation to the sequence of three

assignment statements that are actually necessary to implement the opratlon in

FORTRAN. Finally, the plan provides no information on how to perform whatever

transformations may be necessary to go from the control structure of the plan to the

control structure actually used m the program; in this case, it does not supply the

information on how to go from the block structure used in the plan to the necessary

sequence of FORTRAN GOTO statements. Supplying all the information that is omitted by

the plan itself is the justification for the use of the complex problem-solving structure

for code generation that was described in the previous chapter.

67

4.1.2 Operation of the Program for Lines 13-60

Lines 13-60 of the protocol consist of only code generation, and they have been

simulated using the model. A complete trace of the model's behavior is given in Section

4 of Appendix 5. At the beginning of the segment, it is presumed that the subject has

available the plan just described. In addition, he already has some information about

two of the data structures he will use in the prog am, the two arrays, L and M. This

information was acquired from the problem instructions read by the subject while doing

problem HENRY, the first problem in the set; it's retention for application in this

problem can be inferred from its use th-oughout the program. In the program, this

Knowledge is presumed to be stored in the MEANINGS structure in the following form:

1. (MEANS (LIST OF NUMBERS)), (TYPE ARRAY), (LENGTH 100), (NAME L)

2. (MEANS (AUXILLARY ARRAY)), (TYPE ARRAY), (NAME M), 'LENGTH 100))

The first line is tne set of attribute-value pairs that describe L; the second line is

the set for M. They indicate that the first quantity MEANS LIST OF NUMBERS, that it is

of TYPE ARRAY, LENGTH 100, and is called L , in the program, and that the second

quantity MEANS AUXILLARY ARRAY, is of TYPE ARRAY, is called M in the program, and is

of LENGTH 100.

Plan element 1 specifies the creation of a variable which is a pointer to the next

odd number and which has an initial value equal to the beginning position of the list of

numbers. When this plan element is followed, it has two major effects: the creation of

an entry in meanings for the pointer and the generation of code to initialize the pointer

to 1. The generation of this code by the subject may be seen in lines 13-23 of the

protocol:

S13:S0, POINTERONE
S14:POINTER ONE IS A POINTER TO

68

A15:[WRITESPTR1]
516:11'$ A POINTER FOR NEXT ODD
S17:NEXT ODD

S18:AND THE OTHER ONE IS JUST GOING TO GO THROUGH THE ARRAY SO
Si9:111 JUST WRITE THIS NEXT ODD
S20:START OUT AND
A21:[WR1TES NEXTODD-1]
S22:POSITION ONE LET'S JUST SAY
S23:DO 10 I EQUALS

(Note the change in the name the subject gives to the pointer between lines 13-15 and

the remainder of the segment; as was merttoned previously, no attempt was made by

the program to model this behavior.)

When the system begins operation to produce this same code, STM is presumed to

have the following contents:

1. (PLAN-ELEMENT (CREATE (POINTER (NEXT ODD)) (BEGINNING
(LIST OF NUMBERS))))

2. (CODE)
3. (MEANINGS)
A. EMPTY
5. EMPTY
6. EMPTY
7. EMPTY
8. EMPTY
9. EMPTY
10. EMPTY
11. EMPTY
12. EMPTY
13. EMPTY
14. EMPTY

"EMPTY" is used to indicate STM slots containing material irrelevant to the programming

task.

The first element of STM is the first element of the plan. The next two elements are

pointers to the CODE and MEANINGS structures respectively.

The first production to be invoked is PLAN-CREATE-POINTER-1. Its invoking

69

condition is the presence of an element in STM which matches the pattern, (PLAN

(CREATE (POINTER »RESTnl») *REST«2*)). A verbal statement of this pattern is "any

PLAN which calls for creating a pointer described by whal matches »REST«1* and

initializing it to whatever matches »REST«2*."

The production has three actions. The first of these is to use the function,

NEWMEANWG, to add the following group to MEANINGS:

(MEANS (Nr '.r ODD)), (TYPE POINTER), (NAME NEXTODD)

Since no second argument is supplied, this entire list is added to MEANINGS as a single

group.

The second and third actions of this production begin the generation of code to

initialize the pointer. The second action has two parts: first, it takes a template for

setting two things equal and uses PUTARG to instantiate it by plugging in (POINTER

(NEXT ODD)) and (BEGINNING (LIST OF NUMBERS)) as parameters. Before this

instantiation tne template looks as follows:

(«GETARG» 1) - («GET ARG' 2) (NEWLINE)

After instantiation it appears as:

(POINTER (NEXT ODD)) - (BEGINNING (LIST OF NUMBERS)) (NEWLINE)

Once it is instantiated, the second part of the action is to call NEWMEANING to add the

template along with its effect to MEANINGS to give the following group in MEANINGS:

(EXPRESSION ((POINTER (NEXT ODD)) - (BEGINNING (LIST OF NUMBERS))
(NEWLINE)))

(EFFECT (EQUAL (POINTER (NEXT ODD» (BEGINNING
(LIST OF NUMBERS))))

70

The final action of the production is to apply the code generation function, CODE-

GEN, to the instantiated template in order to produce the actual code. As described

previously, CODE-GEM proceeds by passing the elements in the template one at a time

to CODE-EL. The first element in the template is (POINTER (NEXT ODD)). Since this is

not an a-tual code element, CODE-GEN calls GETMEANING, with arguments of (TYPE

POINTER) and (MEANS (NEXT ODD)), to search for a name for the item in MEANINGS;

since the quantity has already been created, it finds an entry for it, and returns the

name, NEXTODD. CODE-EL passes this back to CODE-GEN, which adds it to the buffer of

code being created. The next element in the template is "-". Since this is a piece of

actual code, it is returned by CODE-EL unchanged and is added directly to the buffer for

code being created.

The third element in the template is (BEGINNING (LIST OF NUMBERS)). As in the

case of the first element, CODE-EL calls GETMEANING to find whether the requested

quantity is available from MEANINGS. Since it is not, CODE-EL reports back failure (NIL).

CODE-GEN responds to this failure by creating two new STM elements and then

returning.

These new elements are
(NEW-CODE (NEXTODD ■))

(CODE-GENERATION TEMPLATE-1 P0SITI0N-1 SIGNALS-1)

The first of these contains all the new code that was in CODE-GEN'S buffer; the second

contains the status of CODE-GEN at this point and corresponds to a node in a goal tree.

The next production that is invoked is NEW-COOE-3. its invoking conditions are the

presence of elements matching the patterns:

(NEW-CODE »ANY»)
(PLAN-ELEMENT »REST«)
(MEANINGS)
(CODE)

71

In addition to rehearsing the PLAN-element, CODE, and MEANINGS, it has two other

actions. The first is to call the ADDCODE function on the new code contained In the

NEW-CODE element; this function adds the new code onto the CODE structure. The

second action is to call the REPLACE function, described in the section on STM

structure, to change the word, "NEW-CODE," in the first element to "OLD-COOE."

When this production is completed, the CODE-GENERATION element left in STM by

the previous production, the CODE and the MEANINGS elements, and the absence of any

GOAL elements together serve M the invoking conditions for the production, CONTINIJ-:-

CODE-GENERATION-1. This production marks the CODE-GENERATION element as an OLD-

CODE-GENERATION and calls CODE-GEN with the remainder of the template at the point

at which coding was interrupted. This time when CODE-GEN encounters the (BEGINNING

(LIST OF NUMBERS)) element it creates the new STM elements:

(GOAI (BEGINNING (LIST OF NUMBERS)))

and

(CODE-GENERATION TEMPLATE-2 P0SITI0N-2 SIGNALS-2)

At this point, STM appears as:

1. (CODE-GENERATION TEMPLATE-2 POSITION-2 SIGNALS-2)
2. (GOAL (BEGINNING (LIST OF NUMBERS)))
3. (CODE)
fl. (MEANINGS)
5. (PLAN-ELEMENT (CREATE (POINTER (NEXT ODD)) (BEGINNING

(LIST OF NUMBERS))))
6. (WRITTEN-CODE (NEXTODD -))
7. (OLD-CODE-GENERATION TEMPLATE-1 POSITION-1 SIGNALS-1)
8. EMPTY
9. EMPTY
10. EMPTY
11. EMPTY
12. EMPTY
13. EMPTY
14. EMPTY

72

Note the presence of the CODE-GENERATION and OLD-CODE-GENERATION elements

which perform the equivalent of a goal tree for code generation by indicating that

coding of a template is still incomplete.

A production, GOAL-BEGINNING-1, has as its invoking condition the pattern, (GOAL

(BEGINNING «REST«)), which is matched by the GOAL element in STM. It has two main

actions. The first is to call NEW-MEANING with (BEGINNING 1) as its first argument and

(MEANS (LIST OF NUMBERS)) as the second; the use of the second argument has the

effect of causing the first attribute-value pair to be added to the same group as the

second pair or set, rather than creating a new set. This means that the information that

the array begins at i is added to the information in MEANINGS about the array, L The

entire entry in MEANINGS now is:

(MEANS (LIST OF NUMBERS))
(TYPE ARRAY)
(LENGTH 10G)
(NAME L)
(BEGINNING 1)

The second action is to add the element, (NEW-CODE 1), to STM. The conditions

for invoking NEW-CODE-3 are then met; it adds the 1 to the CODE structure.

Once this GOAL is satisfied, encoding of the template is completed, and the effect

associated with this code is retrieved by CODE-GEN (using the function, GETMEANING)

and placed into STM as an EFFECT element. STM has the following appearance after all

the code that has been generated is written out into the CODE EM:

1. (CODE)
2. (PLAN-ELEMENT (CREATE (POINTER (NEXT ODD)) (BEGINNING

(LIST OF NUMBERS))))
3. (WRITTEN-CODE (CRLF))
4. (EFFECT (EQUAL (POINTER (NEXT ODD)) (BEGINNING

(LIST OF NUMBERS))))
5. (MEANINGS)
6. (WRITTEN-CODE 1)
7. (OLD-GOAL (BEGINNING (LIST OF NUMBERS)))

73

8. (OLD-CODE-GENERATION TEMPLATE-2 POSITION-2 SIGNALS-2)
9. (WR1TTEN-CODE (NEXTODD ■»
10. (OLD-CODE-GENERATION TEMPLATE-1 POSITION-1 SIGNALS-1)
11. EMPTY
12. EMPTY
13. EMPTY
14. EMPTY

CODE now contains:

NEXTODD - 1

The production that will be evoked under these conditions, EQUIVALENT-EFFECT-1,

calls the COMPARE-EFFECT function to determine if the effect of the code is the one

desired for the current plan element. Since it is, the production system will place the

next plan element into STM.

Summarizing the operations performed by this sequence, it creates the line of code,

NEXTODD-1, and assigns it an effect. In the course of doing so, two goals are created

and satisfied, one for the variable name, and one for its initial value. Comparing this

with the subject's behavior in lines 16-21, the same basic elements are seen. Line 16

contains the subject's generation of the name; line 22 reveals generation of the initial

value from information about the "list of numbers" array; and, line 21 shows the

subject's generation of the code itself.

The next plan element calls for looping through the list of numbers. The

corresponding segment in the protocol is:

S23:D0 10 I EQUALS
S24:LET,S MAKE THIS A 20
A25:[WRITES DO 20 1-1,100]
S26:I EQUALS ONE TO 100

Coding of this plan element follows ihe same basic outline as for the first one. Two

74

-- - —

goals are generated and satisfied, one for a label for the end of the loop and one for

the loop index. The code that is generatec. is:

DO 10 1-1, 100

In the protocol, the subject first writes this code the same way the program does,

but then changes tiie label io 20. The change does not appear to be motivated by the

achieved or desired effect of code, but, rather, by the subject's naming conventions.

Since, as discussed in the section on NEWQUAN, the model does not include this naming

behavior, the rubject's label alteration is not followed by the model.

As with the previous template, completion of coding results in the placement of the

effect of the code mto STM Additionally, in this case, an element of the following form

is placed in STM:

(CODE-CONDITION (OPEN-DO-LOOP (LABEL (LOOP-THROUGH
(LIST OF NUMBERSKLOOP-TMROUGWLIST OF NUMBERS)))))

It represents the programmer's knowledge, shown in lines 50-51 of the protocol, that

the DO loop he has just created is still open.

If this element were not rehearsed, it would eventually be driven off the end of

STM; this would correspond to the error situation in which the programmer forgets to

terminate a loop. In this case, the LOOK-AT-CODE mechanism described previously is

used to prevent this situation from occuring by assuming that the item is rehearsed

whenever the programmer sees the DO statement in the written code.

Following the plan element for looping is one that calls for performing a test

operation on the element of the array pointed to by the loop index. Coding begins by

invoking PLAN-IF-1 which responds to STM elements matching the patterns, (PLAN-

ELEMENT (IF tREST»)) and (OLD-PLAN-ELEMENT (LOOP-THROUGH «LIST«)). This

75

-*- . .

production has three actions. First, it rehearses the element which matched the first

pattern. Second, it calls NEW-MEANING to place the instantiated template, IF-1, and its

effect in to MEANINGS. (The instantiation is accomplished as part of the argument to

NEW-MEANING. Third, the production calls CODE-GEN with the instantiated template as

its argument.

Coding of this template proceeds in the same general manner as has been described

previously. Noteworthy is the creation of a goal, (GOAL (TEST ((EVEN PARITYKARKAY-

ELEMENT (LIST OF NUMBCS) (VARIABLE (LOOP-INDEX)))))), for the test inside the IF

statement. This goal matches the pattern, (GOAL (TEST ((EVEN PARITY) «REST«))) end

invokes the production, GOAL-TEST-EVEN-PARITY, which creates the code for the test.

Coding of the remainder of the IF statement then follows. When this is complete, tli«

plan element is alsi completed.

The equivalent benavior on the part of the subject appears in lines 27-32 of the

protocol:

S27:IF THE THING IS ODD -IF
S28:L SUB I DIVIDED BY TWO TIMES TWO EQUALS L SUB I
S29:THEN WE WANNA SAY
S30:G0 TO 20
A31:[WRITES IF(L(I)/2*2-L(I))GO TO 20]
S32:1F IT'S NOT ODD

Note that generation of the test for the IF statement appears as a separate line in

the protocol because the subject breaks off a previous phrase before stating the ode

for it. This suggests that the subject also treats creation of the test as a separate goal

from the rest of the IF statement and that the model accurately reflects his behavior.

(This »separation appears even more clearly in two of the other segments modeled by

the program.)

76

r
After comoletion of the plan element for the test, the next element in the plan is a

special BEGIN! marker; it represents the subject's knowledge, as seen in lines 33 and 34

of the protocol, that the following calculations are a group that is performed only if the

number is odd.

S33:SO IT IS ODD
S34:AND IF IT IS ODD

No code .s generated from it, but it does cause the rehearsal of any COHE-

CONDITION elements which are in STM.

Within the group that the BEGIN! marker initiates, there are two other plan elements.

The action of the first of these is represented as SWAP-AND-INCREMENT. Though two

distinct functions are named, they are represented as a single, compound action since

the subject appears to treat them this way; in lines 35-47 of the protocol, generation of

the code for the two functions is intermixed:

S35:ThEN WE'LL SAY SWITCH IT WITH NEXT ODD
S36;PUT A ZERO HERE
A37:[CHANGES NEXTODD-1 TO NEXTODD=0]
S38:AND WE'LL SAY K EQUALS L SUB I
A39:[WRITES K-L(I)]
S40:L SUB I EQUALS
S41:L SUB NEXT ODD
A42:[WRITES L(I) =L(NEXTODD)]
S43:L SUB NEXT ODD - NO NEXT OOD
S44:NEXT ODD EQUALS NEXT ODD PLUS ONE
A45:[INSERTS NEXTODD=NEXTODD*l BEFORE K-L(l)]
S46:NEXT ODD L EQUAL K
A47:[WRITES L(NEXTODD)=K]

In order for the SWAP-AND-INCRFMENT operation to be performed properly, a

necessary prerequisite is that NEXTODD have the proper m.tial va!ue. In other

situations, this value might be determined by first wnt.ng the code for the operation

and then symbolically executing ,t for the case in which the first two elements of the

77

w^^m^m^^mmu—mmf

array are to be swapped; in this case, however, the subject apparently is aware, before

the rest of the code is written, that NEXTODD should initially be 0. He therefore goes

back to the beginning of the program where he has written NEXTODD - 1 and re-writes

it as NEXTODD - 0 (in lines 36-37 of the protocol).

This ability to re-write incorrect code is provided for within the program; every

time CODE-GEN is called with a new template, it uses a function, SIMILAR-EFFECT, to

checK whether the effect of the new template matches the effect of a previous template

stored in MEANINGS in certain ways. If it does, then is assumed that the code

generated from the new template is intended to re-write the older code. In this case,

the two effects are:

old: (INITIALIZED ((POINTER (NEXT ODD)KBEGINNING
(LIST OF NUMBERS))))

new: (INITIALIZED ((POINTtR (NEXT ODD)) 0))

If the effects do match, then CODE-GEN places a pointer to the older code into STM

in the form of an element, (OLDCODE). As each piece of code from the new template is

placed into STM, a production, NEW-CODE-1, uses the function, HOW-MODIFY, to

oetermme how the new code is to modify the older code, whether it should replace it,

be inserted before it, or be inserted after it. One of the 3 productions, REPLACE-COOE-

1, INSERT-BEFORE-1, and ADD-ON-CODE-1, then makes the modification and updates the

OLDCODE pointer. In this problem, CODE-GEN first produces (NEWCODE (NEXTODD - 0»

and (OLDCODE). NEW-CODE-1 calls HOW-MODIFY and changes the first element to

(REPLACE (NEXTODD - 1 CRLF) (NEXTODD - 0 CRLF)). (The "CRLF" stands for "carriage

returo - line feed " and is used to indicate the end of a line in the code.)

Once NEXTODD has been properly initialized, the subject begins to write the code

78

^^VM^H^M^W^^n^VM^

for interchanging the two elements of the arrays, in lines 38-47. In the course of doing

so, he discovers that he has not incremented NEXTODD, and he interrupts writing the

code for swapping the element' to insert NEXTODO - NEXTODD ♦ 1 before the swap.

There is no evidence in the protocol that his discovery was the result of attempting to

execute tha code for some particular value of NEXTCDO. Instead, it seems to have come

about as a result of his using the name, NEXTODD, which served to remind him that he

had not yet written the increment statement,

Since the behavior comes about as a consequence of seeing something in the

written code, the program uses the LOOK-AT-CODE mechanism to simulate this

behavior, but because the LOOK-AT-CODE element is placed into STM only when the

entire template is complete'I, the simulation is not exact. As soon as the code for the

entire swap of the array elements has been written out into CODE, an element is

introduced into STM via the LOOK-AT-CODE device which indicates that NEXTODD has a

value of 0 and cannot be used as a subscript. This condition causes a production,

REPLACE-CODE-1, to be invoked which uses the code re-wntmg mechanism described

previously to insert the code. Thus, in the program, the modification to the initialization

of NEXTODD takes place after, not during, the writing of the swap code.

At this point, the code appears as

NEXTODD = 0
DO 100 1-1,100
IF(L(I).E0.L(i)/2 ♦ 2) GOTO 10
NEXTODD = NEXTODD ♦ 1
K - L(I)
L(I) ■ L(NEXTODD)
L(NEXTODD) - K

After the SWAP-AND-INCREMENT has been completed, the next plan element calls

for setting the corresponding element in the M array to one. The subject does this as

79

r F^^p^^am »w "■■■ > -■- ■" i 111 MPIII

a single operation with no evidence of creation of a new variable name or ottier

subgoals:

S48:ANP M SUB NEXT ODD EQUALS ONE
A49:[WRITES M(NEXT0DD)-1]

Similarly, in the program, the creat on of code for it is also very straight-forward.

It is done completely by PLAN-SET-EQUAL-l which encodes the 'emplate, EQUAL-1. No

other subgoals or productions are involved.

The final element of the plan is »he END! that closes the blocK of code following the

IF statement. A production, PLAN-END-C0DE-C0NDITi0N-2, sensitive to the conjunction

of an END! element and a CODE-CONDITION of OPEN-DO LOOP, then creates the

CONTINUE statement which closes the loop and completes the program. The

corresponding behavior on the subject's part is:

550:20 CONTINUE
A51:[WRITES 20 CONTINUE]

The final program is:

NEXTODD = 1
DO 10 I - 1 ,100
IF (L (I) / 2 « 2 . EQ . L (I)) GOTO 10
NEXTODD - 0
NEXTODD = NEXTODD ♦ 1
K-L(l)
L(I)-L(n
L(I)-K
M (NEXTODD) - 1
10 CONTINUE

It differs from the subject's code only in the b'jel names.

In gaining an overview of the relationship between the model trace and the

protocol, it is important to note the level at which comparison is appropriate. No

^.0

r "■" ■ ■

attempt was made to achieve correspondence at the level of a production for each word

or phrase; instead, the model is intended to reproduce just two characteristics of the

coding behavior: (1) the overall order in which code is created and (2) the size of the

units in which it is created, defined in terms of what is accomplished by single

operations. From this perspective, the model fits the protocol reasonably well. With

the exception of the problem in incrementing NEXTODD caused by the LOOK-AT-COOE

mechanism, the order of code generation by both the subject and the model match.

Additionally, the unit sizes also match well. Both the subject and the model create the

IF statement as two distinct pieces of code while the swap operation ii a single piece

even though it takes several lines in the program. Both also store and retrieve some of

the same information about code quantities since both set the corresponding element in

M without creating new goals for information about variable names. Thus, when

compared at the levc' of code generation order and unit size, the model adequately

reproduces the important characteristics of the subject's behavior.

4.2 Problem LEE

Problem LEE was the 19th problem done Ly the subject; the complete protocol is

given in Appendix 2. It l;es below the median in writing time but it tooK a longer than

average time to debug and run. The task was to find all sets of numbers such that all

members of the set were multiples of the smallest member in the set, excluding one and

zero from the sets. The sets were then to be placed at the beginning of the array, and

the corresponding positions in the M array for the first set were to be set to one, the

second set to two, etc.

This problem was selected for modeling because, for the theory, it is almost a

classical on«; not only are all three of the processes of the» theory explicitly visible in

8J

mm^^*^**^^^w

the protocol, but considerable interaction among the processes may also be seen. Th»

three processes occurred in the following order:

lines 1-51 Understanding
52-66 Planning
67-MO Coding
141-179 Planning
180-387 Coding

As can be seen, the Understanding process at the beginning of the protocol is a

quite protracted one. The main issue which consumes this effort is how to handle

negative numbers. If the problem is interpreted so that their actual, rather than

absolute, value is used, and " .Itiples" is interpreted as meaning "multiplied by a

positive number," then each negative number would form a set by itself. Since this

seems pe uhar to the programmer, he attempts to verify that the mterpretation is a

correct one by using information from a supplementary resource, asking the

experimenter. The experimenter leaves the interpretation up to the programmer; the

programmer then decides to attempt to write the program using the interpretation in

which the actual values of negative numbers are used.

Parenthetically, attention should bt ^'awn to the clear design-task characteristics of

tne understanding process in this case. The basis on the which t^e interpretation of the

problem is questioned is the the programmer's notion of what constitutes a suitable

problem; it does not soem reasonable to him that a correct interpretation of the problem

would result in many of the sets of multiples having only one member. A test for what

constitutes a "suitable" problem requires access to a wide range of diverse information.

The use of this "suitable" problem idea In the understanding process guarantees the

main characteritic of design tdsks, the continuous introduction of new knowledge during

the course of problem solving.

S2

»lipniaiii j MI <■■<■...•. i pi m i i mtv~*r*mmrm\i i in . i . i n ■ ■

After the interpretation issue is clarified, an initial plan is created; as in problem

RICHARD, creation takes place rapidly with no evidence of extended problem-solving

activity. This initial creation is visible in lines 52-66 of the protocol; the plan conceived

in this segment .5 apparently the one used until the Planning segment that begins in line

141. From these lines alone, the plan consists of first ordering the numbers and then

going through and finding the multiples. From lines 94-95 in the Coding section, a more

elaborate statement of the plan can be inferred: First find a positive. If any negatives

are found, the corresponding positions in M p^e to be set to 1, as is seen from lines

108-Jl! ar>d, if the loop terminates, then the program is done operating (from lines 112-

133). When a positive number is found, the plan is to check whether its successors are

positive; if they are, they are to be swapped with any non-multiples which lies between

the pos'tive number and the multiple that has been found (from lines 119-124 and 132-

139 and 143 in the next planning section).

The complete plan at the end of th s first Planning section looks like:

1. Order the numbers.

2. Go through the numbers and find a positive one.

For each negative number found, set the corresponding position in M
to the value of the loop index.

If no positive numbers are found, then the program is done.

3. Test the rest of the numbers in the array to find whether they are
divisible by the positive number that has been found.

4. Keep a pointer to the first non-positive after the posit've has been
found.

5. Each time a multiple is found, swap it with ne element that the pointer
poi.^s to and update the pointer.

83

1
.... .,. . i..i ■ ■■iwBi ■ !-—■■■>. mm -■■ ■■ -^- ■■■■ v ■■ ■■ i —^ .— —

Again, the indentation is used to indicate that operations are to be performed only if a

condition holds.

The program representation of this plan is:

1. (ORDER (LIST OF NUMBERS))
2. (FIND-EXISTENCE ((FIRST POSITIVE) (LIST OF NUMBERS)))
3. (BEGIN! (OTHERWISE)^
4. (SET (CORRESPONDING-ELEMENT (AUXILLARY ARRAY)

(VARIABLE (LOOP-INDEX)))
(VARIABLE (LOOP-INDEX)))

5. (END! (OTHERWISE))
6. (END! (FIND-EXISTENCE-LOOP-THROUGH))
7. (BEGIN! (POSITIVE-FOUND))
8. (FIND-AND-SWAP

((MULTIPLE) (LIST OF NUMBERS) (VARIABLE (LOOP-INDEX)))
((LIST OF NUMBERS) (VARIABLE (INNER-LOOP-INDEX))))

Note that the END! in item 6 does not have a corresponding BEGIN!. This is because

the FIND-EXISTENCE function in item 2 belongs to a class of items which open DO loops

and, therefore, act as implicit BEGIN!s. (For a full list of this class, see Appendix 4.) The

BEGIN! in item 7 is unbalanced because the plan at this point is still incompletely

specified; the subject has still not decided what to do when all the multiples of the

number have been found. (As in the preceding problem, this plan is still quite far from

the eventual program. In particular, the plan uses a different set of operators and

operations than those available in FORTRAN, and it omits the naming, creating, and

initializing of data structures.)

This plan as originally conceived will not work; interchanging elements which are

multiples with elements vhich are not destroys the ordering of the array. The subject

discovers this in th« course of writing the code for doing the interchar^e, in lines 129-

U5 of the protocol. How this discovery is made is not quite clear from the protocol,

since the subject writes very little of the code before making the discovery; however, it

34

■^■■■^■^ ' "-'■' ■-' --

is probably a reasonable inference that he partially generates and symoblically executes

the code without writing or vocalizing it. The symbolic execution reveals that, after

finding the first set of multiples, the array will no longer be in increasing order and that

he can no longer be sure that the next divisor he tries will be the smallest member in

the set.

Since the problem in this case lies in the plan and not just in the code that has been

generated to fulfill the plai\ the planning processes .s again invoked.; this is visible in

lines 146-179 in the protocol. His starting point in modifying the plan is an idea thd

first appears in line 142 of the protocol: e?ch tine a multiple is found it is put in

position at the beginning of the array, and all the non-multiples which preceeded it in

the array are moved up one place to preserve the ordering of the array. He uses a

diagram to verify and elaborate this idea, and, at line 180, begin, using it to generate

code.

Lines 180-302 are basically concerned with writing the code for finding the

multi^es and shifting 'her., to the head of the array. Beginning about line 303 he

begins to concern himself with terminating conditions. To generate the code for these,

he a;>ain symbolically executes the code that he has already written, this time using

various terminating conditions as the values for the execuhon; for example, in lines 303-

320 he symbolically executes a branch condition with values of greater than 100 for the

variable, NEXT. Once he has satisfied himself that the program works correctly for all

these terminating conditions, he is done with writing the code for the program.

4.2.1 Program Operation for Lines 52-141

The program has been set up to operate for lines 52-141 of this protocol. This

segment begins just after the initial plan creation and ends with the discovery that the

• '^inal plan is inadequate.

^ggg^f^^H^^mm^^mmm^mmmm^m^^mmmtmmmmm'mf^m^wv^^^^'^mm n ntnw^mmmmm n ■ ■ i m^^^^^i- ■ .1 1 1 1 m mm 11 <■•

The first element of the plan requires the ordering of the list of numbers. It is:

(PLAN-ELEMENT (ORDER (LIST OF NUMBERS)))

Compared to the other elements in the plan, it seems to be at a higher level of

abstraction; however, there is no evidence in the protocol that it ever gets broken down

any further, and code is generated directly from it. A possible explanation is that the

subject has written the code for ordering numbers so often that it has become a

planning primitive for him.

In the model, this code generation is handled as a series of steps in which the effect

of one step, in combination with the plan, is used as the invoking condition for the next

step. The first of these steps is represented by:

(GOAL (LOOP-THROUGH ((LIST OF NUMBERSHORDER (LIST OF NUMBERS»)))

which is interpreted as "goal for looping through the list of numbers as part of ordering

the list of numbers." In response to this goal, a production is firee off which invokes

the CODE-GEN function with the template, L00P-1. When coding of this template is

completed, it produces

DO 10 1-1,100

and leaves as its effect,

(EFFECT (LOOPED-THR0UGH ((LIST OF NUMBERS)((0RDER (LIST OF NUMBERS))))
(LABEL (LOOP-THROUGH ((LIST OF NUMBERS)((ORDER (LIST OF NUMBERS)))))))

This is interpreted as "the effect is to loop through the list of numbers to order the list

of numbers, and the effect is complete at the label for looping through the list of

numbers to order ihem." The corresponding behavior by the subject is:

S67:DO 100 I EQUALS ONE
S68:TO 100
A69:[WRITES DO 100 1-1,100]

86

•^■^■^^^■WW^W^^IPPl ^*immm^**^^w i. .. .^

The presence of this effect and the plan element in STM are invoking conditions for

a production which produces:

(GOAL (INNER-LOOP-THROUGH
((LIST OF NUMBERS,BORDER (LIST OF NUMBERS))))))

This is a goal for the production of an inner loop that goes through the list of numbers.

In turn, this results in a call to CODE-GEN with the template, L00P-2. The code

generated from It is:

DO 10 J-1,100

This has as its effect,

(EFFECT (INNER-LOOPED-THROUGH
((LIST OF NUMBERS)((ORDER (LIST OF NUMBERS))))
(LABEL (LOOP-THROUGH (LIST OF NUMBERS))
(LENGTH (LIST OF NUMBERS))))

In the protocol this corresponds to:

S70:DO
S71:J EQUALS I PLUS ONE
S72:10O
A73:[WRITES DO 100 J-1,100]

While this is the correct effect for the goal, it is not the correct effect for the plan.

To order the numbers efficiently, the inner loop should begin at one pest the current

position of the outer loop and should run to one less than the outer loop. In the

program, the subject sees this and corrects it in lines 74-78 of the protocol:

S74:OR I 1
A75:[WRITES ABOVE SECOND DO, II-I* 1]
S76:J EQUALS 1 1
S77:99
A78:[ALTERS SECOND DO STATEMENT TO READ, DO 100 J-I1.99]

B7

■■^w—« ■ I ■ "■ IM I II« I M^pw^^RHHI«pMMMIMVI^m^P««^mmi^w*^nw«in ■ ii i in i^pw-^ I ,11 I, I IP^^mmv^tn^MT

In the program, the correction is accomplished by a production, PLAN-ORDER-

AFTER-WR0NG-1NNER-L00P-1, which has as its in' oking conditions, the presence of a

plan element for ordering the list of numbers, the effect just given, and the absence of

of an effect of incrementing a pointer. The latter condition is equivalent to specifying

that the inner loop begins at one rather than beginning at a pointer which has a value

one greater than the index of the outer loop. This production has two main actions. One

of them is to use the OLDCOOE mechanism to mark the DO loop th*t was just written as

erroneous code which is to be replaced by new code. The second action is to introduce

into STM a goal for creating a pointer which would be equal to the value of the outer

loop index plus one. This goal appears as:

(GOAL (INCREMENT (INNER-LOOP-ORIGIN) 1)))

This has the effect of creating a variable which MEANS INNER-LOOP-ORIGIN ano then

creating the code to increment it by one.

The effect of this code and the plan element then serve as conditions for a

production, GOAL-LOOP-THROUGH-1, which creates a DO loop that begins at this pointer

and has the length of the list of numbers minus one as its up)er bound. This goal

appears as:

(GOAL (LOOP-THROUGH
((LIST OP NUMBERS)
NIL
(MINUS (LENGTH (LIST OF NUMBERS))!))))

This is interpreted as "goal for creating an inner loop through the list of numbers

beginning at the default location (represented by the NIL) and running to the length of

the list of numbers minus one." This goal results in a call to CODE-GEN using the

template, LOOP 3. Since the OLDCODE clement is present in STM, the function, HOW-

88

■«■MM mmmmmmmmm^mmi PI »mm - —. - -,..-..>

MODIFY, is called for each piece of code generated from this template. It marks these

new pieces as replacements for the o'd DO loop. When coding of the entire template is

completed, the combined result of the goal and the one previous to it is to produce the

code, which performs the inner loop for the ordering operation:

II - I * 1
DO 10 11- 1,99

In the protocol, up to line 97, the subject uses 100 as the terminating label for the

DO loop while the program uses 10. The subject's change to 10 in lines 97-98 does not

arpear to be motivated by the achieved or desired effects of the code he is writing,

but, as in a similar case in problem RICHARD, by his set of conventions for generating

labels. As such, no attempt has been made to maKe the model produce the same

behavior as the subject.

Once the two loops have been created, the next step in ordering the the numbers

is 'o test whether the current largest number is larger than the next number to be

tested in the array. This takes place in 80-83 of the protocol:

S80:W L SUB 1 IS
S81:LESS THAN EQUAL TO
S82:L SUB J GO TO 100
A83:[WRITES IF(L(I).LE.L(J))GO TO 100]

The effect of completing the two DO statements serves as part of the invcKing

conditions for a production which creates a goal for writing this code. This goal

ippears as

(GOAL (IF (TEST (GREATER)
(ARRAY-ELEMENT (LIST OF NUMBERS)

(VARIABLE (LOOP-INDEX)))
(ARRAY-ELEMENT (LIST OF NUMBERS)

(VARIABLE (INNER-LOOP-INDEX))))
(GOTO (LABEL

(LOOP-THROUGH ((LIST OF NUMBERS)
(ORDER (LIST 01 NUMBERS))))))

89

»ü^^"—" ■■■ I I ■! 1

This goal invokes the production, GOAL-IF-TEST-GREATER-1. which calls CODE-GEN with

template, IF-l. 1F-1 is a general template for IF statements which have a GOTO as their

action. Code for the specific test within the IF statement is generated by creating a

sub-goal for that specific test. The goal for creating the test for which element Is

greater appears as

(GOAL (TEST ((GREATER)
(ARRAY-ELEMENT (LIST OF NUMBERS)

(VARIABLE (LOOP-INDEX)))
(ARRAY-ELEMENT (LIST OF NUMBERS)

(VARIABLE (INNER-LOOP-INDEX))))))

The production, GOAL-TEST-GREATER-1, satisfies this goal by calling CODE-GEN with th»

template, TEST-2; it results in the code.

L(I).GT.L(J)

and has the effect,

(EFFECT 'JEST (^GREATER)
(ARRAY-ELEMENT (LIST QF NUMBERS)

(VARIABLE (LOOP-iNDEX)))
(ARRAY-ELEMENT (LIST OF NUMBERS)

(VARIABLE (INNER-LOOP-INDEX)))))

When the goal for th? entire IF statement is satisfied, it produces the code,

IF (L(l).GT.(L(J)) GOTO 10

which has the effect,

(EFFECT (BRANCH-IF
(GREATER

(ARRAY-ELEMENT (LIST OF NUMBERS)
(VARIABLE (LOOP-INDEX)))

(ARRAY-ELEMENT (LIST OF NUMBERS)
(VARIABLE (INNER-LOOP-INDEX))))

(GOTO (LABEL
(LOOP-THROUGH

((LIST OF NUMBERS)
(ORDER (LIST OF NUMBERS))))))))

90

1 «■•■■ " ■»«•■PWiP^^PWWW^WilNllll i liWli p^i^r^^^ww^i^^ppiiri

This is interpreted as "if the array element pointed 10 by the outer loop index is

greater than the array element pointed to by the inner loop index, branch to the label

which is the end of the loop for ordering the list of numbers."

If the current element is greater than the largest element found so far, then the

next step in the ordering operation is to swap the two elements. In the program, the

goal for doing the entire swap is satisfied by calling PLAN-ORDER-AFTER-BRANCH-IF-1

which calls CODE-GEN with a template, SWAP-1. This template, when completed,

generates the following code for the swap:

LL-L(I)
L(I)-UJ)
L(J)-LL

This use of a single template to generate severcl lines of code is equivalent to the

assertion that, for the subject, these several lines of code are a single knowledge unit.

Lines 84-88 of the protocol support this assertion:

S8a:0THERWISE WE SAY L SUB 1
A85:[WRITES LL=L(I)]
S86:L SUB I L SUB J
A87:[WRITES L(I)=L(J)]
S88:L SUB J EQUAL L

They show that the generation of this code takes place as a single, uninterrupted

operation, which would be the case if knowledge about how to generate it were a single

unit.

After the swap is complete, the code must be written to close the loop. It is done in

lines 91 and 92 of the protocol:

A91:[WRITES 100 CONTINUE]
S92:ALL RIGHT, THEY'RE NOW IN ORDER

The goal for this is:

91

■ - -—

nww i ii "in ink.. "^■«pMHMHMMMPHMPoaaiamMMmMwwi ap ii i ■■■■■■■•m» ■ 11 i i w^mmmmmm.

(GOAL (LOOP-END
(LABEL (LOOP-THROUGH ((LIST OF NUMBERS)

(ORDER (LIST OF NUMBERS)))))))

It is placed into STM as the result of a production, PLAN-ORDER-AFTER-SWAPPED-1,

whose invoking conditions are the plan element, the effect of the swap, and the CODE-

CONDITION element that was placed into STM when the loops were created. The goal is

satisfied with a production, GOAL-LOOP-END-1, that calls CODE-GEN with the template,

LOOP-END-1, to generate a CONTINUE statement. At this point, the completed code

looks like:

DO 10 I = 1 , 100
II -11 ♦ 1
DO 10 J = 1 , 99
IF (L (I) . GT . L (J)) GOTO iC
K-L(I)
L(I)-L(J)
L(J)-K
10 CONTINUE

Completion of the loop also completes the plan element for ordering the list of

numbers, as the subject states in line 92. The next plan element is

(PLAN-ELEMENT
(FIND-EXISTENCE ((FIRST POSITIVE) (LIST OF NUMBERS))))

which calls for finding the first positive in the list of numbers, as can be inferred from

lines 93-95 of the protocol:

S93:NOW WE SAY
S94:START FROM THE FIRST
S95:FIND THE FIRST POSITIVE

The first step in carrying out this plan element is to invoke PLAN-FIND-EX1STENCE-

AFTER-FIRST-POSITIVE-1 which creates a goal,

(GOAL
(FIND-EXISTENCE-LOOP-THROUGH

92

mmmmmmm

(LIST OF NUMBERS)
((FIRST POSITIVE)
((FIND-EXISTENCE ((FIRST POSITIVE) (LIST OF NUMBERS)))))))

It specifies the creation of a loop for finding the existence of the first positive in the

list of numbers; this is done by PLAN-FIND-EXISTENCE-F1RST-P0SITIVE-1. This goal is

satisfied by a production, GOAL-FIND-EXISTENCE-LOOP-THROUGH-l, which calls CODE-

GEN with the template, LOOP-3, to create

DO 20 1=1,100

The effect of this code serves as part of the invoking condition for the next step in

finding the first positive, creation of an IF statement which tests whether the current

element pointed to by the loop index is positive, as is done in lines 101-106 of the

protocol:

S101:IF L SUB I IS GREATER THAN L
A102:[WRITES IF (L(I).GT. L(]
S103:IF IT'S GREATER THAN
S104:rrS EITHER ZERO OR ONE
S105:ONE
S106:G0 TO 30

The goal for this appears as:

(GOAL
(IF (TEST (POSITIVE)

(ARPAY-ELEM^NT (LIST OF NUMBERS)
(VARIABLE (LOOP-INDEX))))

(GOTO (LABEL (POSITIVE-FOUND) SMALL))))

This is interpreted as "goal for testing whether the element pointed to by the array

index is positive; if it is, go to a label which means 'positive found'." Again, the general

template, IF-1, is used in creating the code for satisfying this goal, so that the test itself

appears as a separate goal. Note that in the protocol an indication of the validity of

93

- ■--

1,11 '■

this reparation appears in lines 101-106; the subject Knows how to write the beginning

of the IF rJatement and the GOTO at the end, but he puzzles over the test in the middle

of the statement.

The goal for the test in the model is:

(GOAL (TEST «POSITIVEXARRAY-ELEMENT (LIST OF NUMBERS)
(VARIABLE (LOOP-INDEX))))))

Satisfaction of this goal permits the completion ff the IF statement to give:

IF(L(I) ,GT. 0) GOTO 30

The effect of this code serves to complete the plan element for finding the first positive

in the list of numbers.

The next plan element is

(PLAN-ELEMENT (BEGIN! (OTHERWISE)))

The production that is sensitive to this plan element, PLAN-BEGIN-1, does not create

any goals for code generation nor does it generate any code directly; instead, this plan

element serves to indicate that what follows belongs together as one group inside the

DO loop

In the protocol, the subject indicates this by:

S108:OTHERWISE WE SAY 20 SAYS

The first plan element of this group is

(PLAN-ELEMENT
(SET (CORRESPONDING-ELEMENT

(AUXILIARY ARRAY)
(VARIABLE (LOOP-INDEX)))

(VARIABLE (LCDP-INDEX))))

9J

mm wi— ■*

**>-,

which calls for setting the corresponding element of the auxiliary array to the value of

the variable which is the loop index. Since this plan element can be carried out by only

• single line of code, the production which responas to this plan element, PLAN-SET-

EQUAL-1, does not create any GOALs; instead, it calls CODE-GEN directly with the

template, EOUAL-2, to produce the code,

M(I)-1

In the protocol, this appears as:

S109:M S'JB I EQUALS I
A110:[WRITES 20 M(I)-I]
Sill: NUMBER

The suceeding plan element is:

(PLAN-ELEMENT (tND!))

This serves to match the preceding BEGIN! and indicates the end of the group of actions

which are performed if the number is not positive. The production which responds to it

and to (he presence of a CODE-CONDTION element, PLAN-EN0-C0DE-C0NDITI0N-2,

calls CODE-GEN with the template, LOOP-END-l, which produces the code,

20 CONTINUE

to close the loop.

The END! plan element is followed by:

(PLANi-ELEMENT (END! (FIND-EXISTENCE-LOOP-THROUGH)))

A production with patterns, (PLAN-ELEMENT (END! «RESTt)) and (OLD-EFFECT (LOOP-

TERMINATION *REST«)), matches this element and the element,

(OLD-EFFECT
. (LOOP-TERMINATION

(FIND-EXISTENCE-LOOP-THROUGH

95

wam^^mmm^

1
((LiST OF NUMBERS) ((FIRST POSITIVE)

((FIND-EXISTENCE
((FIRST POSITIVE) (LIST OF NUMBERS)))))))

The latter is the effect o« the CONTINUE s*ete«ient ttwK teffrrmated the loop. The

production then generates:

GOTO 300

This is the branch that i« taken if no positive numbers are found. The equivabnt

behavior is seen in line«; 112-115 of the protocol:

S112:AND DOWN MERE IF IT EVER GETS THROUGH THE LOOP WE'RE DONE
S113:GO TO EXIT
S114:EXIT WE'LL CALL 500
A115:[WRITES GO TO 500]

Note the difference In label numbers between the program and the protocol.

The next plan element is:

(PLAN-ELEMENT (BEGIN! (POSITIVE-FOUND)))

As in the other uses of BEGIN! elements, this marks the beginning of a group or section

of code, m this case, that for the action to be taken when the first positive is found. It

results in a call to CODE-GEN with the template, LABEL-1, which generates the label,

30, corresponding to the subject's behavior in lines 116-118:

S116:OK, 30
A117:[WRITES LABEL 30]
SI 18:NOW THAT WE HAVE THE FIRST ONE

After this label is generated, the next plan element is

(PLAN-ELEMENT
(FIND-AND-SWAP
((MULTIPLE) (LIST OF NUMBERS) (VARIABLE (LOOP-INDEX)))
((LIST OF NUMBERS) (VARIABLE (INNER-LOOP-INDEX)))))

9b

i"'!""" ," '■ i i i IUI.III»-.!! mi. i . i nm^mm^Bigm^mmnint — ■ ' ■•■■■ »i » ■• ■■■IIIIPIII» — ___^^^,

which calls for finding multiples m the list of numbers «nd swapping them with non-

multiples. This plan element is never completed, since, in the course of it, the subject

discovers the error in his plan.

The code completed by the program up to this point is:

DO 10 I - I , 100
ii • n ♦ i
DO 10 J - 1 , 99
IF (L (I). GT . L (J)) GOTO 10
K-L(I)
L(I)-L(J)
L(J)-K
10 CONTINUE
DO 20 I - 1 , 100
IF(L(i) .GT. 0) GOTO 30
M(I) - 1
20 CONTINUE
GOTO 300
30

As noted, it differs from the code written by the subject only In the label names. Again,

the model trace creates code in about the same size Cf unit and in the same order as

the subject does.

4.3 Problem JOHN

Problem JOAN, the fourth problem done by the subject, took 27.5 minutes for the

code to be written (slightly above the average). In it, the subject was asKed to write a

program which would take every other number and pla-.e it at the beginning of the

array and put the original position of the number in the corresponding position in M.

(The complete protocol is given in Appendix 2.)

This problem was selected for modeling because, surprisingly, considering the

relative simplicity of the problem, tfn protocol shows a very extended planning phase,

taking a total of the first 263 uns of protocol (about 21 minutes worth). Of interest

was whether this extended planning would have any effect on the coding phase.

97

^mmmmmm < '« ^~mi^m^m^mm^mm^m^~mm**~m mm^*m~ nmtit , wmmm*^—m-^^r IMIMI » m

Most of the planning is concerned with finding a wsy to solve the problem only by

moving the elements around withm the array, L, instead of copying them into another

array. He begins by trying to work out the mappings from the initial positions to the

final ones to develop a formula for the subscript numbers. Once he has done this, he

conti iues to work with the subscript mappings and hits upon the idea that the mapping

can be completely circjlar and that the problem may be solved simply by exchanging

pairs of elements in the proper order. To test this idea, he begins to work out the

entire set of mappings for the 100 array elements but gives up when he sees no

regular pattern emerging. He then works out the mappings for a very short array using

a diagram and discovers that simply exchanging elements pairwise will not work, at least

in the order in which he is trying to do it. He then goes ahead and works out a solution

involving copying the arrays.

The basic structure of this plan is seen in lines 259-276 and involves copying the

array elements into M and then copying them back Into L That he intends to do the

copying as two separate operations, one for the odd numbers and one for the even

numbers, can be inferred from lines 289-290 and from the code he actually writes.

Similarly, his intent to do the copying back in two parts is obtained from lines 332-335

and from the written code. The complete plan that he has when he begins to write cooe

is:

1. Copy the elements at odd positions in the list of numbers into the first half of
the auxiliary array.

2. Copy the elements at even positions in the list of numbers into the second half
of the auxiliary array.

3. Copy the first half of the auxiliary array into the first h-jlf of the main array and
set the first half of the auxiliary array to the numbers of the even positions.

4. Copy the second half of the auxiliary array into the second half of the main array
and set the second half of the auxiliary array to the numbers of the odd
positions.

rW^^PPPimiPPF" « l ii MW "■ ■■mil >II»*P w^^w^SMWWiWPaWF^WVm^lB^lfimHf^ ■ ■ ■

In the program, this plan is represented as:

((COPY ((ODD-POSITIONS) (LIST OF NUMBERS»
((FIRST-HALF) (AUXILLARY ARRAY)))

(COPY ((EVEN-POSITIONS) (LIST OF NUMBERS))
((SECOND-HALF) (AUXILLARY ARRAY)))

(COPY-AND-SET
(((FIRST-HALF) (AUXILLARY ARRAY))
((FIRST-HALF) (LIST OF NUMBERS)))

((AUXILLARY ARRAY) (EVEN-PJSITIGrv'S)))
(COPY-AND-SET
(((SECOND-HALF) (AUXILLARY ARRAY))
((SECOND-HALF) (LIST OF NUMBERS)))

((AUXILLARY ARRAY) (ODD-POSITIONS))))

Note that this plan is not a very efficient one, even for the basic method chosen; by

using appropriate subscript expressions, it is possible to solve the problem using two

loops instead of four. The subject is aware of this; in lines 325-334 he attempts to do

the second two plan elements as one single loop, but changes his mind in line 334,

perhaps because the effort involved in figuring out the proper subscripts is too large.

In terms of the theory this corresponds to modifying or revising the first plsn.

attempting to code the revised plan, having the revised plan fail (too high an effort

expenditure), and then returning to the original plan.

4.3.1 Model Operation or Lines 279-359

Lines 279-359 of the protocol have been modeled with the program; thoy cover the

generation of code for the entire program.

At the beginning, STM contains

(PLAN-ELEMENT (COPY ((ODD-POSITIONS) (LIST OF NUMBERS))
((FIRST-HALF) (AUXILLARY ARRAY)))

which is the first element of the plan that the subject has for solving the problem. The

production system responds to this with COPY-LOOP-THROUGH-1 which creates i goal

for looping through the list of numbers:

99

-■■ - ■ - -

rj^ü^WBM^^^^^^"^"" "

(GOAL
(LOOP-THROUGH
((LIST OF NUMBERS)
(COPY ((ODD-POSITIONSHLIST OF NUMBERS))

((FIRST-HALFHAUXILLARY ARRAY)))))
NIL
(VALUE ((ODD-POSITIONSKLIST OF NUMBERS)))))

This requires the creation of a loop that runs through the list of numbers (to copy the

odd positions into the first half of the auxiliary array) which starts at the default value

of 1 (indicated by the NIL) and hes as Mt upper bound the va'ue o^ the number of odd

positions in the list cf numbers. The production, GOAL-LOOP-THROUGH-2, is invoked in

response to thii go?'; it calls CODE-GEN with template, LOOP-2, to create

DO 10 1-1,100

corresponding to the code that the subject creates in lines 279-282:

S279:DO 10
S280:I GOES EQUALS ONE TO
A281:rWRITES DO 10 1-1,]
S282:LET,S WORRY ABOUT WHERE IT'S GONNA GO TO LATER

The production also leaves a code condion element in STM,

(CODE-CONDITION
OPEN-DO-LOOP
(LABEL
((LIST OF NUMBERS)
((COPv ((ODD-POSITIONS) (LIST OF NUMBERS))

((FIRST-HALF) (AUXILLARY ARRAY)))))))

which indicates that the DO loop has not been terminated yet.

The effect of this code and the plan element are the invoking conditions for the

production, COPY-SET-EQUAL-l, which creates the goal:
•

(GOAL
(SET (ARRAY-ELEMENT (AUXILLARY ARRAY)

(VARIABLE (LOOP-INDEX)))
(ARRAY-ELEMENT

100

wKm

(LIST OF NUMBERS)
(POINTER-EXPRESSION
((ODD-POSITIONS) (LIST OF NUMBERS)

(VARIABLE (LOOP-INDEX)))))))

This goal invokes the production, GOAL-SET-EQUAL-l, which calls CODE-GEN with the

template, EQUAL-1, to produce the code «or setting the current element of the iuxiliery

array equal to the next odd number in the list of numbers.

Creating the coda for this requires setting two subscripted variables equal to each

other. Normally, subscribted variables are handled identicalli to simple variables: the

decription of the variable is pabsed to CODE-EL by CODE-GEN. If both \Ky variable and

subscript have been used before and are in MEANVJGS then CODE-EL returns as •

"name" the complete subscripted variable name, including parenthesis and subscript

variable. Thus, if CODE-EL is given:

(ARRAY-ELEMENT (LIST OF NUMBERS) (VARIABLE (LOOP-INDEX)))

it returns

Ul)

If either th«» array name or tie subscript name are not in MEANINGS, then CODE-EL

reports failure and returns NIL for the whole expression. This mechanism is intended to

represent a psychological reality, that if the subscript is Known, the subject treats

subscripted variables identically to simple ones.

In this case, the expression for the current element of the auxiliary array is:

M(I)

Since both the array name and the subscript are known, thL is generated in the manner

just described. The expression for the next odd element in the list of numbers

101

I ■! ■ — 1111 I III

*w ■ i •• ■ i ■■ annvi^im

represents much more of a problem; not only is the subscript not in MEANINGS, but it is

a complex expression rather than just a variable name. The model handles this by

creating a goal for the whole subscripted variable name when COOE-EL fails:

(GOAL
(ARRAY-ELEMENT
(LIST OF NUMBERS)
(POINTER-EXPRESSION
((ODD-POSITIONS) (LIST OF NUMBERS)

(VARIABLE (LOOP-INDEX))))))

This goal is satisfied by GOAL-ARRAY-ELEMENT-1 which calls CODE-GEN with template,

ARRAY-ELEMENT-1. The process of creating code for the template in turn prodi :es:

(GOAL
(POINTER-EXPRESSION
((ODD-POSITIONS) (LIST OF NUMBERS)

(VARIABLE (LOOP-INDEX)))))

This goal is satisfied by the GOAL-POINTER-EXPRESSION-ODD-POSITIONS-1 production

which then permits completion of coding of the ARRAY-ELEMENT-1 template. In turn,

this allows completion of the EQUAL-l template to produce:

M(I) - L (2 • I ♦ 1)

An analogous process is visible in the protocol. In lines 283-284, he writes the first

part of the statement up to the subscript for L:

S283:SAY M SUB I 13 GOING TO BE EQUAL TO L SUB
A284:[WRITES M(I) - L(]

Lines 285-292 are concerned witn the creation of the subscribt and correspond to

the goal for a pointer expressiot. in tlie program:

S2851ALL RIGHT, NOW WE NEED A POINTER GOING BACKWARDS
S286:BUT THAT DOESN'T MATTER SO MUCH
S287:YEAH(HERE'S SUB I
S288:AHH, IS THERE A TRIVIAL INVERSE
S289.GO FROM ONE TO 50

102

S290
S291
A292

THAT'S JUST GONNA BE THE ODD NUMBERS
SO THAT'S L 2 TIMES I PLUS ONE
[COMPLETES STATEMENT WITH (2 » I + 1)]

The effect of this piece of code, again, combined with the plan element, are the

conditions for the production, COPY-LOOP-TERMINATION-1, which produces

(GOAL
(LOOP-END
(LABEL
(LOOP-THROUGH
((LIST OF NUMBERS)
((COPY ((ODD-POSITIONS) (LIST OF NUMBERS))

((FIRST-HALF) (AUXILLARY ARRAY)))))))))

The production, GOAL-LOOP-END-1, responds to this goal by calling CODE-GEN on the

template, LOOP-C.ND-l, to generate the CONTINUE statement which closes the loop. This

completes the pl.jn element.

The code which has been completed up to this point is:

DO 10 I - 1 , 50
M(I)-L(2*I*1)
10 CONTINUE

The creation of this piece of code by the subject takes place in a slightly different

order than in the program. The subject writes the beginning of the DO statement, but

decides to figure out later what the upper bound of the loop should be:

S282:LErS WORRY ABOUT WHERZ IT'S GONNA GO TO LATER

He then begins to write the statement for setting the two array elements equal

and interrupts what is doing to go back and complete the DO statement:

S289:GO FROM ONE TO 50
S290:THAT,S JUST GONNA BE THE ODD NUMBERS

103

-

Pmce the subscript expression depends on the loop bound, this suggests that the

subject has deferred deciding on the loop bound until after he has decided on the

subscript expression. The model lacks mechanisms for deferring decisions in this

manner so that it works in the reverse order, using the loop bound to determine the

subscript.

The next plan element is:

(PLAN-ELEMENT (COPY ((EVEN-POSITIONS) (LIST OF NUMBERS))
((SECOND-HALF) (AUXILLARY ARRAY)))

This plan element is very similar to the previous one, and generation of code for it

takes place in a very similar manner. Again, however, there is a discrepancy between

the way in which the program generates code and the way in which the sub/ect doe«.

For this loop, the subject first tries making the index increase by steps of 2 with an

upper bound of 100 and using 50 + 1/2 as the subscript expression. He eventually

decides to do it with a loop running from 1 to 50 and using I as the subscript.

r unctionally, this is completely equivalent to the way the model finally writes the

program.The subject's rationale for trying this alternative is that it may be more

efficient in terms of machine time:

S310:DIVISI0N IS A LITTLE BIT SLOWER THAN MULTIPLICATION
5311:WE'RE STILL DOING THE SAME NUMBER OF STEPS
S312:SO THAT'S NO GOOD
S313:THAT DOESN'T SAVE ANYTHING

Efficiency issues such as this are presumably handled r? a special kind of symbolic

execution in which the emphasis is on certan side effects of the code structure -

memory utilization, etc. The program does not incorporate this specialized symbolic

execution and so does not attempt this altenative coding.

The succeeding plan element is:

104

. ■

(PLAN-ELEMENT (COPY-AND-SET
(((FIRST-HALF) (AUXILLARY ARRAY))
((FIRST-HALF) (LIST OF NUMBERS)))

((AUXILLARY ARRAY) (EVEN-POSITIONS))))

It calls for copying the first half of the auxiliary array into the first half of the array for

the list of numbers and setting the elements in the first half of the auxiliary array to

the numbers of the even positions in the original array. This is first responded to by

the production, COPY-ANO-SET-LOOP-THROUGH-1, whicn produces the goal,

(GOAL
(LOOP-THROUGH
((AUXILLARY ARRAY)
((COPY-AND-SET

(((FIRST-HALF) (AUXILLARY ARRAY))
((FIRST-HALF) (LIST OF NUMBERS)))

((AUXILLARY ARRAY) (EVEN-POSITION^))))
NIL
(VALUE ((FIRST-HALF) (AUXILLARY ARRAY)))))

This is responded to by the production, GOAL-LOOP-THROUGH-2. This production calls

CODE-GEN to create a DO-loop statement.

The effect of this loop in the context of the plan element invokes COPY-AND-SET •

EQUAL-ARRAY-HALVES-1; the goal created by this production is satisfied by GOAL-SET-

EQUAL-1 which creates the goal for setting the element of the array for the list of

numbers equal to the corresponding element in the auxiliary array.

The next step in carrying out the plan is:

(GOAL
(SET (ARRAY-ELEMENT (AUXILLARY ARRAY)

(VARIABLE (LOOP-INDEX)))
(POINTER-EXPRESSION
((EVEN-POSITIONS) (AUXILLARY ARRAY)

(VARIABLE (LOOP-INDEX))))))

It is a goal for setting the elements in the auxiliary array equal to the numbers of the

105

odd positions in the list. It is responded to by GOAL-SET-EQUAL-l which uses CCDE-

GEN to attempt to create the necessary code. In the process of creating this code the

goal:

(GOAL
(POINTER-EXPRESSION
((EVEN-POSITIONS) (AUXILIARY ARRAY)

(VARIABLE (LOOP-INDEX)))))

must be satisfied; it is a goal for an expression which is the value of the even positions

in the arrays. When this goal is satisfied and the rest of the template for setting the

two things equal can be completed the cod« produced is:

M(0 • 2 • I ♦ 1

Completion of this code is that last action that must be performed inside the loop. A

goal for loop-termination creates the CONTINUE statement and completes action on the

plan element.

The corresponding segment of protocol is:

S325:DO 30
8326:1 GOES FROM ONE TO 100
A327:[WRITES DO 30 1=1,100]
S328:L SUB I EQUALS M SUB l
A329:[WRITES L(I) - M(I)]
S330:AND THAT M SUB I 18 NOW EQUAL TO THE SAME THINGS AGAIN
S331:NOW WE HAVE THE INVERSE FUNCTION
S332:IF IT'S EVEN THEN IT'S TWO TIMES I PLUS ONE
S333:IF IT'S ODD THEN IT'S THAT
S334:LET'S DO IT ONE TO 50
A335:[CHANGES RANGE OF DO LOOP TO 1,50 FROM 1,100]
S336:M SUB I IS GOING TO BE 2 TIMES I PLUS ONE
A337:[WRITES M(I) r 2 » I ♦ 1]

In comparing the model to it, note that in the model, a separate goal is created for

the expression that is to be the new value for M(I). An equivalent behavior is seen in

106

lines 330-333. However, the subject's behavior has a consequence, changing the value

of the upper bound of the array, which the model does not produce. This behavior on

the subject's part could have come about in either of two ways: One is as a varient of

the deferred decision behavior seen in the previous plan element} the value of 100

could be just a temporary place holder until the real value is worked out. Alternatively,

he could have intended to write 50 all along, a view somewhat supported by his use of

I, rather than (I+l)/2, as the subscript in the previous line. If the former is the case,

then the model is unable to produce the behavior. If the latter is true, though, the

LOOK-AT-CODE mechanism, together with appropriate retrievals from MEANINGS, could

be used to obtain the same effect.

The final element of the plan is:

(PLAN-ELEMENT (COPY-ANO-SET
(((SECOND-HALF) (AUXILLARY ARRAY))
((SECOND-HALF) (LIST OF NUMBERS)))

((AUXILLARY ARRAY) (ODD-POSITIONS)))))

Coding of it begins in a very similar manner to the previous plan element.

The code created by the program up to this point is:

DO 10 I - 1 , 50
M(I)-L(2»I+1)
10 CONTINUE
DO 20 I - 1 , 50
M(1)-L(2« I)
20 CONTINUE
DO 30 I - 1 , 50
L(l)-M(I)
M(I)-2*l
30 CONTINUE
DO 40 I - 1 . 50
L (I ♦ 50) - M (I ♦ 50)
M(I)-2»I+ 1
40 CONTINUE

107

■vwnmiiu iiu i n^*^■(^■^^^»^ I« -i

This code is identical to the code generated by the subject up to thts point, including

the error in the subscript for M in the second-to-l«st hm.

At in the previous two exampfe«, the sice of unifc in wtiich tt» model generates

code corresponds fairly we« to the size of unrt aeen in the protocol. In ttw« case,

however, the model has wore difficulty with the order in which code is generated; It It

unable to duplicate an attempt to find a more efficwnt wey of coding an operation, and

it has no mechanism for deferring decisions about loop bounds. Cure of the first

problem would depend on a better representation of written code than the current

CODE structure, since an recoding for efficiency would have to be driven by the code

already written. Cure for the deferred decisions problem is probably simpler and would

involve the addition of productions to handle the case in whtch a goal is not immediately

satisfied.

4.4 Problem LARRY

Problem LARRY was the eighteenth problem completed by the subject; it had the

shortest solution time of any probtem in the set, taking on«y 4.7 minutes to write and

4.9 to de-bug, and was, therefore, selected as one of the problems to model. The task

for the subject to program was to find all the items in the list that ended in one 'n base

10 notation and place them at the beginning of the array; the postions in M

corresponding to these numbers were to be set to 1. The complete protocol is given in

Appendix 2.

The problem is a good example of a straight procession through the three processes

with no back-tracking to a previous process. The understanding process consists simply

Of reading the instructions, in the first 7 lines of the protocol. The planning process is

slightly more complex. It begins with planning a solution to a sub-problem, how to test

whether a number ends in the digit, one (lines 8-18). The solution that is found is:

108

- -

" i ' "' •"^•^»^■^H^HMWW"^^»-" ■■ ■■■

1. Divide the number by 10 and then multiply it by 10.
2. Subtract this quantity from the original number.
3. The difference will be the digit that the number ends in.

With this subproblem solution in hand, the subject creates the plan for solving the

main problem. The initiation of this process can be seen in lines 19-04 of the protocol.

Since there are no other planning segments in the protocol, the plan created at this

point is, presumably, the one us^d for coding.

Using the statements in these lines and the code that he actjally generates, it can

be inferred that his entire plan might appear as follows:

1. Create a pointer to keep track of the number of numbers found which meet
the condition.

2. Go through the array and find all numbers which meet the condition. When
one is found.

Increment the pointer for number of numbers found.

Swap the element the pointer now points to with the number just n'ound.

In the program, this plan is represented as:

(CREATE (POINTER ((LAST-MODULO-FOUND) (LIST OF NUMBERS») 0)
(FIND-ALL ((1 MODULO 10) (LIST OF NUMBERS)))
(BEGIN! (1 -MODULO-10-FOUND»
(INCREMENT (POINTER ((LAST-MODULO-FOUND) (LIST OF NUMBERS))))
(SWAP (ARRAY-ELEMENT

(LIST OF NUMBERS)
(POINTER ((LAST-MODULO-FOUND) (LIST OF NUMBERS))))

(ARRAV. -ELEMENT (LIST OF NUMBERS) (VARIABLE (LOOP-INDEX))))
(SET (CORRESPONDING-ELEMENT

(AUXILLARY ARRAY)
(VARIABLE (LOOP-INDEX)))

1)
(END! (1 MODULO- 10 -FOUND))
(END! (FIND-ALL-LOOP-THROUGH))

4.4.1 Program Operation for Lines 25-59

The first step of this plan is interpreted as "create a pointer to the last number

109

i ■!■""■ Ml Mil II I WHqi^pi^OTi"a«<WM^ni*PUIWI '■

found which had the propei modulo division properiiesj initialize it to 0." This is

responded to by the production, PLAN-CREATE-POWTER-l, which has two effects. The

first is to create a new entry m MEANIMGS witti three attribute-value pairs in it; the

NAME, obtained via NEWQUAN, is N, it is of TYPE POINTER, and it MEANS ((LAST-

MODULO-FOUNDKLIST OF NUMBERS)). The second is to catl CODE-GEN with the template,

EOUAL-2, »o create the rode,

N-0

The equivalent behavior by the subject is seen in lines 25-29 of the protocol:

S25.DO
S26:ALL RIGHT, SO IT'LL BE NUMBER
S27:E0UALS 0
A28:[WRITES N«0]
S29:THAT,S HOW MANY THERE ARE

The next plan element is:

(PLAN-ELEMENT (FIND-ALL ((1 MODULO 10) (LIST OF NUMBERS))))

This requires finding all elements in the list of numbers which leave the remainder 1

when divided by 10. The production which responds to this plai element is PLAN-FINO-

ALL-MODULO-2 which creates the goal:

(GOAL
(LOOP-THROUGH ((LIST OF NUMBERS) (FIND-ALL-MODULO-LOOP))))

This is a goal for looping through the list of numbers.

The effect of writing the DO loop for this goal, combined with the plan element,

invokes FIND-ALL-M0DUL0-2. This is a production for creating a test for whether a

quantity is divisible modulo n when it is desired to find all such items. It creates the

goal:

(GOAL

110

" ■' w^rnmK^^^^^K^

(IF (TEST (i MODULO 10)
(ARRAY-ELEMENT (LIST OF NUMBERS)

(VARIABLE (LOOP-INDEX))))
(GOTO
(LABEL
(LOOP-THROUGH
((LIST OF NUMBERS)
(FIND-ALL ((1 MODULO 10) (LIST OF NUMBERS)))))))))

This is interpre;'.d as a goal for an IF staSemenl which tests whether a number has a

remainder of 1 when divided by 10; if it does, it branches to the label which ends th«

DO loop. As with the IF statements in the previous examples, the production, IF-TEST-1,

is invoked and calls CODE-GEN with the basic IF statement template, IF-1; creation of

the particular test within the statment is then handled by a sub-goal created during the

course of coding the template. Again, a.o equivalent behavior appears in the protocol,

in lines 34 - 40:

S3^.MINUS L SUB I DIVIDED BY 10
S33:TIMES 10
S36SOMETHING ONE
S37:IF IT'S EQUAL TO ONE
S38:IF IT'S NOT EQUAL TO ONE
S39:WE JUST LOOP
S40:N0T EQUAL TO ONE

When the entire template is complete the .ode that has been created up to this

point is:

N-0
DO 10 1-1,100
IF(L(I)/10»10 .NE.1) GOTO 10

Note that the branch is taken if the number does not have the proper remainder when

divided by 10.

The next part of the plan is a block containing the actions to be taken when a

HI

number meeting the criterion is found. In the protocoi, it is signaled by the subject's

statement in line 43:

S43:0THERW1SE WE'LL SAY

In the program, the block begins with:

(PLAN-ELEMENT (BEGIN! (1 -MODULO-10-FOUND-)»

which marks the beginning of the block; it is responded to by PLAN-BEGIN-1 which

rehearses appropriate items, but does not create any code. The plan element following

it is:

(PLAN-ELEMENT (INCREMENT (POINTER
((LAST-MODULO-FOUND) (LIST OF NUMBERS)))))

This results in invoking PLAN-INCREMENT-POINTER-1 which calls CODE-GEN with

template, INCREMENT-1, to create the code for incrementing the pointer.

Once this has been completed the next plan element is:

(SWAP (ARRAY-ELEMENT
(LIST OF NUMBERS)
(POINTER ((LAST-MODULO-FOUND) (LIST OF NUMBERS))))

(ARRAY-ELEMENT (LIST OF NUMBERS) (VARIABLE (LOOP-INDEX))))

This calls for swapping (he number which has just been founj (and which is pointed to

by the loop index) with the number pointed to by the pointer for the last modulo found.

PLAN-SWAP-1 is invoked by this plan elemf t, and it calls CODE-GEN with the template,

SWAP-!. Note, again, that the swap consists of a single template and is treated as a

single FORTRAN statement by the subject:

S46:L L EQUALS L SUB I
A47:[WRITES LL-L(I)]
S48:L SUB 1 EQUALS L SUB N
A49:[WRITES L(I)-L(N)]
S50:rM NOT GONNA DESTROY THE ARRAY
S51:L SUB N IS EQUAL TO L SUB I

112

MMMM^

mmm^^^mmmmmmmm*^^ fii»«i "m mwup« IPHUL«» m« i . ■" ■"

A52:[L(N)-L(I)]

After the swap is completed, the next plan element is,
>

(SET (CORRESPONDING-ELEMENT
(AUXILIARY ARRAY)
(VARIABLE (LOOP-INDEX)))

Through the production, PLAN-SET-EQUAL-1 and a call to CODE-GEN with tempi e,

EQL'^L-l, thii produces the code for setting the corresponding element in the auxiliary-

array to 1.

The block in the plan is terminated by

(PLAN-ELEMENT (END!))

The production, PLAN-END-1, responds to this. As with the BEGIN, actual code is

created from the plan element (though the production does have other actions, such as

rehearsing items).

The final element of the plan is

(PLAN-ELEMENT (END! (FIND-ALL-LOOP-THROUGH))))

PLAN-END-CODE-CONDITION-2, which responds to this, calls CODE-GEN with the

template, LOOP-END-1, to create the CONTINUE statement at the end of the loop. This

completes the program. The final code appears as

N - 0
DO 10 I - 1 , 100
IF (L (I) / 10 . NE . 1) GOTO 10
N-N ♦ 1
LL - L (N)
L(N)-L(I)
L (I) - LL
M(I)- 1
10 CONTINUE

Again, this code is identical to the program written by the subject.

113

n— (mrjMppHp^wwwa» i ' ' " ^^^""i " ' "mmm >II i.nn.i»» »nj i » i ■ iiwmmrrmmmimw^tmm^m^mwm imi.m

4.5 Evaluation of the Model for the ^ Segments

In evaluating the adequacy of a model of behavior the answers to two questions

must be considered. The first is to what extent does the output of the model

corresponds to the data, and, second, what evidence exists for the validity of the

mechanisms used by the model to produce the output. The second question is

considered at length m the next chapter; the first question is of interest here.

While the main focus of this discussion will be on the comparison at the level of

code unit size and sequence of generation, a necessary preliminary inquiry concerns

whether phns used in the model accurately represent the plans used by the subject.

This question can be bioken into two parts: (1) «'uether the functional form of the

model plans is correct; and (2) whether the model plans contain the same level of

specification as those used by the subject. An answer to the first part of the question

may be obtained through an inquiry into the use of functional language in the

protocols. A phrase in the protocols was considered to be a uce of functional language

if it consisted of a statement of some function or action to be performed. In contrast,

statements abou(about relationships or about states or goals were not classified

functional language. If such functional language is a frequent feature of planning

segments in the protocols, then it can be argued that the use of similar functional

representations in the model accurately reflects the subject's behavior.

In fact, such functional language is a clear feature of the subject's plans. To begin

with, the reader may verify its use in the planning segments of the four problems

discussed in this chapter. For example, in problem RICHARD, tte subject says

"determine if a number's odd or not" and in JOHN he says, "I'm gonna tal^e every other

one and move them over." Across the 41 planning segments in the 23 protocols,

114

-

■■"""■

functional language can be unequivocally identified in 36 of them, occurring on the

average 11 times in every 100 lines of planning. From this use of functional language in

the protocols, it is likely »'at the functional form o' plans in the model corresponds to

the way in which the subject represents plans.

The answe.- to the second part is more difficult because, often, a greater level of

detail is inferred than is actually directly stated in the protocol. An argument that the

greater level of detail seen in the model accurately reflects the level of detail really

used by the subject is that verbalisations would be expected to contain less detail than

the subject is in fact using. This argument is, however, only a tentative one and further

research is necessary to confirm it.

Having discussed the issue of plan correspondence, the remaining question is that

Of how veridically the model does code generation. A desirable type of answer would

be some sort of overall index measuring the correspondence. Unfortunately,

constructing such an index is very difficult in this case. Perhaps because the tasK is a

design problem, there is no readily available way to reduce the protocols to sequences

Of smaller episodes for scoring purposes. Construction of some global order rneasure

based, say, on information theoretic grounds also appears out of the questirn. Instead,

evaluation of the model-subject correspondence will have to be made on einer grounds.

The first of these grounds is simply the observation that the model has substantial

problems on only one, problem JOHN, out of the four protocols. Even the difficulties

with this problem can be characterized more as a failure to explore some alternative

paths rather than as producing radically differeing code. In the other three problems,

th«re are few or no major mis-matches.

A second ground is in the ratio between the number of lines in the protocol and the

115

■

rr " ■
|"|~11 ■■ ■' '■ ■" ■■|" ■■■ ■

number of cycles taken by the production system to model that beha- tor. These ratios,

which provide a crude time Or effort comparison, are shown in the following table:

Name Lines Cycles Ratio Code

LARRY 38 60 1.6 9
RICHARD 47 65 IA 10
JOHN 80 169 2.1 n
LEE 89 110 1.2 13

Table .2

Problem names are given under the Names heading. The entries under the Cycles

heading are the total number of cycles of the production system necessary to create

the code for the segment; those under the Lines heading are the number of lines of

protocol included in the segment while those under the Code heading are the number of

lines of code generated in the segment by both the subject and the program. The ratio

column gives the ratio between the number of cycles of the production system and the

number of lines of protocol in the protocol segment. (No ratios for lines of code versus

production system cycles are given since the number of lines of code generated is not a

good indicator of "work done" by either the subject or the system.) Note that 3 of 4 of

the ratios lie very close together. Only problem JOHN appears out of line, probably

because of the difficulties the model has in matching the behavior of the subject. This

rough equivalence of the ratios is a further indication of the correspondence between

the operation of the model and the behavior seen in the protocols.

4.6 A Note on STM Size

During the discussion of the STM in the description of the model, it was stated that

116

- --

^tmrnrmmmmmmmmmmmmmmimmmmmmi^m^^mmmi^^mmi «11

the size was set at 14 on a largely arbitrary basis since neither current literature nor

evidence from the protocols presented a basis for a different figure. To investigate

whether 14 was a wise choice the program was run with various sizes of STM for

problem JOHN, the problem with the most elaborate sub-goal structures. When an STM

of 7 elements was used, the current plan element was lost off of the end of STM by the

end of only the 11th cycle of the production system. With an STM of 9 elements, both

the current plan element and the goal created from that plan element were lost by the

29th rycie. Using an STM of 11 elements, the production system ran for 38 cycles

before losing a F<?al that still had not been satisfied. With 12 elements, the same

problem occurred as with 11 elements. 13 elements allowed the model to run

satisfectorlly.

To • certain extent, the necessary size of STM is a function of rehearsal strategies;

if these strategies allow much outdated information to remain near the front of STM,

then a large STM will be necessary to prevent needed information from being pushed

off the the end. To check whether this was a problem in this case, the maximum number

of "active" elements that had to h in STM for the program to run was determined by

observing which elements were necessary for subsequent productions. At the 28th

cycle of the production system, 10 elements fell into this classification. Thus, even with

optimum rehearsal strategies, STM had to be at least 10 elements long.

From these calculations, 14 appears to be slightly too large for the size of STM. In

general, the system indicates that it is done with information by marking it in some way,

for example, by changing NEW-CODE to OLD-CODE, rather »han getting rid of it by

pushing off of the end of STM The only effect of the retention of additional information

that the larger STM size permits is, therfore, restricted to allowing less than perfect

rehe. sal strategies.

117

T
mmf

Analysis of the Mode)

In the preceeding chapter, a correspondence between the output of the mofel and

the behavior in the protocols was demonstrated. For the model to be considered valid,

a remaining, necessary condition is that evidence be presented for the plausibility of

the mechanisms which produce the model's behavior. The basis for this requirement is

that these mechanisms are, in fact, the locus of the psychologic^ assertions which the

model makes. Like any other psvchologkal assertions, they mu«t be judged not only on

the basis of how well they fit particular observed data but also how consistant they are

with other related data and findings. The model here makes use of three primary

mechanisms to which correspond equivalent assertion«:

1. The production system consists to a substanUal entent o< producUom wWth have

particular plan elements as their invoking condrfions and #ho«e actiows «re inatructior«

on how to create code for those particular plan elements. This asserts tt>»t knowk dge

about programming consists of a large amount of specific information about how to

carry out in programrring languages various operations not imptemented as language

primitives.

2. Code creation in the model is accomplished by the production system, CODE-GEN

function, and MEANINGS structure operating in a manner described as symbolic

execution. The equivalent psychological assertion is that code creation by the subject

also is accomplished by symbolic execution.

3. Knowledge about a programming language's syntax is encoded in the model in the

form of coding templates ranging in size from a sub-expression up to a few lines in

length. Human programmers are asserted to use similar sized units.

118

T
"l,, i < 'i'rmm^^mm^mmimmmmr'mim'mmnm^^^mmmmmmi'mmimmmi^^W'''mmm ■■■!...i.i !■! ■■■ nin i HI

The following sections provide evidence for the plausibility of these tssetions.

5.1 Support for the Assertions about Knowledge Representation

5.1.1 Analysis of Frequency of Production Use

In the program the linkage between a particular part of the plan and the code that

is eventually generated from it is effected entirely through the production system. The

following analysis of the frequency of production use displays the nature of this

linkage:

Summing across the four problems, the production system ran for a total of 404

cycles; 73 productions were each used at least once, (i) Usage statistics for these 73

productions are shown in the following table:

Production Usage

Number of Uses Number of Productions Number of Cycles 7. of Total
1-2 47 64 ' 15.8
3-8 9 43 10.6
»9 17 297 73.5

Table 5.1.1.1

Five productions, CONTIIMUE-CODE-GENERATIQN-l, EQUIVALENT-EFrECT-1, LOOK-

AT-CODE-1, NEW-CODE-2 and NEW-CODE-3, accounted for 216 cycles, or 53.57. of the

total. Viewed across the four segments, 21 of the 73 productions (28.87.) were used in

(i) The production system given in Appendix 5 actually consists of 81 productions; 8

of these were included on an a priori basis but were not actually used in the four

problems chosen. They were EQUIVALENT-EFFECT-2, GOAL-LEIMGTH-1, GOAL-POINTER-l,

GOAL-TEST-ODD-PARITY-1, GOAL-TEST-POSITIVE-1, INSERT-BEFORE-1 ,NEW-CODE-4,

and PLAN-BEGIN-CODE-C0NDITI0N-1.

119

■ -

2 or more of the segments. They account tor 81.77. of the total cycles. Summarizing

these figures, they indicate production use in this model has a "Zipf's law" distribution,

in which the nth most frequently used production is used c/n times as often as the first

one (Knuth, 1973). In other words, the system contains a large number of special

purpose productions which are used very infrequently.

On the basis of content, the productions can be divided into 4 groups. The first

group are productions for overall control and goal management and include the LOOK-

AT-CODEs, the EQUIVALENT-EFFECTs CONTINUE-CODE-GENERATION-1, MAKE-OLD-PLAN-

ELEMENT-1, and NEXT-PLAN-ELEMENT-1. The second group contains all the productions

which add to or modify code, including all the NEW-CODEs, ADO-ON-CODE-1, and

REPLACE-CODE-1. The third group includes all the GOAL productions, e.g., GOAL-TEST-

POSITIVE-1. The fourth group contains all the PLAN productions, e.g., PLAN-CREATE-

POINTER-1. All the productions in the first group (except EQUIVALENT-EFFECT-2) are

used in all a segments Of the second group, 3 of the 8 are used in more than one

problem. In the third group, 6 out of 29 productions are used in multiple segments. In

the last group, however, only 3 out of 35 p'eductions are used in several segments.

Also, the five most commonly used productions given earlier belong only to the first two

groups. What can be concluded from these statements is that the special productions

are not evenly distributed but are, instead, primarily plan productions and, to a lessor

extent, goal productions.

As mentioned in the introduction to this section, this distribution of productions is

equivalent to a psychological assertion: An experienced programmer Knows a large

number of distinct plan elements and has associated with each one, information on how

to code it. Each production or sequence of productions, if several are required to code

120

 - ■ ir-—- -- ■ ■ ilf—i—M ■ —

■■

■ plan element, is a representation one of these pieces of knowledge, and the large

number of these productions is a reflection of the size of the body of knowledge they

represent.

5.1.2 Evidence from Plans in Other Problems

Important evidence rn the truth of this proposition would be the total set of plan

and goal productions necessary to simulate behavior for all the coding segments in all

the 23 protocols. If a substantial number of new plan and goal productions were

necessary to extend the existing production system to model them and if it were

difficult to collapse these new productions into fewer, more general ones, then this

would support the assertion about the necessity of a large number of separate

knowledge elements.

Even though the entire set is not available, an estimate of the number of

productions and some idea of their type is obtainable from just the plans for some of

the protocols. The procedure that is followed is to find for each plan element whether a

production already exists or whether an existing production can be easily modified to

fit; if none match, then a new production or sequence of productions is required.

Though it gives no indication of what productions will be required for sequencing among

the plan elements, it does give an idea of what basic productions will be necessary.

For this purpose, four problems, WILLIAM, CARL, ROBERT, and FRANK, were

selected at random from those problems set aside before creation of the model was

begun. (Complete listings of these protocols are given in Appendix 2.) Their plan«;

were specified from the protocols and from the code that was actually created in the

same manner as was done with the 4 segments in the previous chapter; if more than

one plan was used, the plan that resulted in the running program was selected. Each

121

 •'

of the following sections discusses the plan for each of these probtems and the

productions that would probably be necessary to carry it out.

5.1.3 rian for Problem WILLIAM

The initial plan for problem WILLIAM is:

1. (FIND ALL ((SEQUENCES (!NCf?EASING)KLIST OF NUMBERS)))
2. (BEGIN! (SEQUENCE-FOUND))
3. (IF (TEST ((GREATER) (LENGTH (LONGEST-SEQUENCE-FOUNO))))

(LENGTH (CURRENT-SEQUENCE))))
(GOTO (LABEL (FIND-NEXT-SEQUENCE»)

4. (BEGIN (OTHERWISE!))
5. (SET (VARIABLE (BEGINNING (LONGEST-SEQUENCE-FOUND)))

(VARIABLE (BEGINNING (CURRENT-SEQUENCE))))
6. (SET (VARIABLE (END (LONGEST-SEQUENCE-FOUND)))

(VARIABLE (END (CURRENT-SEQUENCE)))
7. (SET (VARIABLE (LENGTH (LONGEST-SEQUENCE-FQUND)))

(VARIABLE (LENGTH (CURRENT-SEQUENCE))))
8. (END! (OTHERWISE!))
9. (END! (SEQUENCE-FOUND))
10. (END! (FIND-ALL-LOOP-THROUGH))
11. (LOOP-THROUGH (AUXILLARY-ARRAY)

(VARIABLE (BEGINNING (LONGEST-SEQUENCE-FOUND)))
(VARIABLE (END (LONGEST-SEQUENCE-FOUND))))

12. (SET (CORRESPONDING-ELEMENT (AUXILLARY ARRAY)
(VARIABLE (LOOP-INDEX)))

1)
13. (END! (AUXILLARY-ARRAY-LOOP-THROUGH))

The first part of this plan is expanded into:

la. (LOCATION (FIND-NEXT-SEQUENCE))
lb. (FIND-EXISTENCE ((SEQUENCE)

((LIST OF NUMBERS)
(VARIABLE (CURRENT-LOW))
(LENGTH (LIST OF NUMBERS)))))

lc. (IF (TEST ((GREATER)
(ARRAY-ELEMENT (LIST OF NUMBERS)

(PLUS (VARIABLE (LOOP-INDEX)) 1))))
(ARRAY-ELEMENT (MST OF NUMBERS)

(VARIABLE (LOOP-INDEX)))
(GOTO (LABEL (SEQUENCE-FOUND)))

Id. (END! (FIND-EXISTENCE-LOOP-THROUGH))
le. (BEGIN! (NEXT-ELEMENT-FOUND))
If. (SET (VARIABLE (LENGTH (LONGEST-SEQUENCE-FOUND)))

(SUM (PLUS (VARIABLE (LOOP-INDEX)) 1)

122

^

w*mm*mmFmmm^immmt^^**~~*** ■^—~—^—"-"—"—■'"—■"——"—-'——^"-»■""—»^«■^

(VARIABLE (CURRENT-LOW))))

Plan-element la is used to indicate the subject's intention that the location for

finding the next sequence is to be located at this point; a new production would be

needed to carry it out. Element lb could be handled by allowing the invoking conditions

for PLAN-FIND-EXISTENCE-FIRST-POSITIVE-l to be either (FIRST POSITIVE) or

(SEQUENCE). Elements 1c to le. can be har.dled by existing productions. Element If

will, however, require a new GOAL production for the SUM operation. Though the

addition operator in FORTRAN is used very frequenctly, it is almost always in the

context of an INCREMENT operation or as part of an expression that is used as a simple

variable so that no general SUM production was included in the basic production system.

Of plan elements 2 to 13, the only new production that is needed is for the LENGTH

function in the 3rd element. (In fact, such a production was provioeJ, but not used, in

the original production system.) At least 3 more productions are, therefore, necessary

to handle this plan.

5.1.4 Plan for Problem CARL

The plan for problem CARL that is used at the beginning of code generation is:

1. (CREATE (VARIABLE (MULTIPLICAND-SUBSCRIPT)) 1)
2. (RUN-THROUGH (VARIABLE (MULTIPLIER))

NIL
(NUMBER-OF (MULTIPLIERS) (LIST OF NUMBERS)))

3. (SET (VARIABLE (MULTIPLIER-LIMIT))
(NEXT-ONE-AFTER (SUM (VARIABLE (MULTIPLICAND-SUBSCRIPT))

(VARIABLE (MULTIPLIER)))))
4. (LOOP-THROUGH (LIST OF NUMBERS)

(VARIABLE (MULTIPLICAND-SUBSCRIPT))
(VARIABLE (MULTIPLIER)))

5. (SET (ARRAY-ELEMENT (LIST OF NUMBERSKVARIABLE (LOOP-INDEX)))
(PRODUCT
(ARRAY-ELEMENT (LIST OF NUMBERSKVARIABLE (LOOP-INDEX)))
(VARIABLE (MULTIPLIER))))

6. (SET (CORRESPONDING-ELEMENT (AUXILLARY-ARRAY)
(VARIABLE (LOOP-INDEX)))

123

■•'i'1»"« ^^^^mmmmmmi^^wmm^mmmm^mirmmmmmm^mfmmmmmmmmmmmmmmmi^mwmmmm-^^m^i^mt »^m^w^mnnn mm

(VARIABLE (MULTIPLIER)))
7. (END! (LOOP-THROUGH (LIST OF NUMBERS)))
8. (INCREMENT (VARIABLE (MULTIPLICAND-SUBSCRIPT))

(VARIABLE (MULTIPLIER)))
9. (END! (LOOP (VARIABLE (MUH IPLIER)))

The RUN-THROUGH construction in element 2, liKe the LOOP-THROUGH, produces a

DO loop construction when coded; it differs from it in the programmer's intent. In this

construction, his primary intent is to go through a set ol possible variable values; in the

LOOP-THROUGH, the primary intent is to act on each of the elements of tn array or

vector, and the change m values of the loop index is only incidental. (There «re

programming languages in which a single statement is used to cause a function to be

applied to all the elements of an array; in these languages, the RUN-THROUGH would

continue to exist .vhile the LOOP-THROUGH operation would be unnecessary.) Since the

RUN-THROUGH construction is not used in the first 4 segments, a new production would

be required for it.

The NUMBER-OF construction, used to indicate the need for an actual numeric value,

also requires a production. Another production is needed for the NEXT-ONE-AFTER

construction, used to indicate the need for an expression which points to the next

element after the current one in an array. Finally, a production is needed for the

PRODUCT function in element 5; as was the case with the SUM function, this operation

was not included in the original set because it was only used inside another expression

and never as an isolated operation. Altogether, at least 4 new productions are

required for this plan.

5.1.5 Plan for Problem ROBERT

The basic plan in this problem is:

1. (ORDER-POINTERS (LIST OF NUMBERS))
2. (CREATE (VARIABLE (NUMBER-OF-SEQUENCES))) 1)
3. (INITIALIZE (CORRESPONDING-ELEMENT

124

- ■ - - ' —

^^^m^^^m^^m^^^^— i ■■! i -»^-^^ iBiina i n w

(AUXILIARY ARRAY)
(ARRAY-ELEMENT (POUTER ARRAY) 1)
1)

4. (SFf (POINTER (LOW-POINT))
(ARRAY-ELEMENT (LIST OF NUMBERS)

(ARRAY-ELEMENT (POINTER ARRAY) 1)))
5. (LOOT-THROUGH (POINTER ARRAY)

(PLUS (BEGINNING (POINTER ARRAY)) 1))
6. (IF (TEST (LESS) (ABSOLUTE-VALUE

(DIFFERENCE
(ARRAY-ELEMENT
(LIST OF NUMBERS)
(ARRAY-ELEMENT
(POINTER ARRAY)
D)

(POINTER (LOW-POINT)))
11)

(GOTO (LABEL (CONTINUE-SEQUENCE)))
7. (BEGIN! (OTHERWISE))
8. (SET (POINTER (LOW-POINT))

(ARRAY-ELEMENT (LIST OF NUMBERS)
(ARRAY-ELEMENT
(POINTER ARRAY)
(VARIABLE (LOOP-INDEX)))))

9. (INCREMENT (VARIABLE (NUMBER-OF-SEQUENCES)))
10. (END! (OTHERWISE))
11. (SET (ARRAY-ELEMENT

(AUXILLARY ARRAY)
(ARRAY-ELEMENT (POINTER ARRAY)

(VARIABLE (LOOP-INDEX))))
(POINTER (LOW-POINT)))

12. (END! (LOOP-THROUGH (POINTER-ARRAY)))

The first element of this plan requires ordering a set of pointers to the list of

numbers by the values yf the numbers in the list. Since the subject uses a different

sorting algorithm to sort the pointers than he uses to sori array elements directly, the

PLAN-ORDER-1 production cannot be used, even if it is modified to change pointer

values. At least 7 new productions are necessary to handle the sequence of steps for

this pointer sort. Additionally, a GOAL production to create an expression in which an

array element is used as a subscript to another array element is probably also

necessery, so that just the first element of this plan uses 8 new productions.

125

.. . ., ■,.., .

wa~m •■■■, ■! •■^^'"^»^^■■»■■■■»«■■•■wp^wnr^^W"! ■!. in 11 " ■ ' • mm^mrw^

Additionally, plan-element 6 requires 3 more productions, one each for the test for less,

the absolute value functon, and the o.fference operation. Altogether, this plan requires

at lea^t 11 more productions.

5.1.6 Plan «or Problem FRANK

The olan is:

1. (FIND-SUM (LIST OF NUMBERS))
2. (SET (VARIABLE (AVERAGE))

(DIVIDEND (VARIABLE (SUM))(LENGTH (LIST OF NUMBERS))))

3. (LOOP-THROUGH (LIST OF NUMBERS))
^ (IF (TEST ((LESS-EQUALKARRAY-ELEMENT (LIST OF NUMBERS)

(VARIABLE (LOOP-INDEX))))
(GOTO (LABEL (LOOP-END)))

5. (BEGIN! (OTHERWISE))
6. (SET (CORRESPONDING-TLEMENT (LIST OF NUMBERS)

(VARIABLE (LOOP-INDEX))
1)

7. (SET (ARRAY-ELEMENT (LIST OF NUMBERSKVARIABIE (LOOP-INDEX))
(PRODUCT (ARRAY-ELEMENT (LIST OF NUMBERS)

(VARIABLE (LOOP-INDEX)))
(ARRAY-ELEMENT (LIST OF NUMBERS)

(VARIABLE (LOOP-INDEX))))
8. (END! (LOOP-THROUGH (LIST OF NUMBERS)))

Item 1 requires the finding of the sum of the list of numbers; it is represented as a

single plan element because the subject treats it as a single operation. Since it requires

the creation of two separate pieces of code, at least two productions would be

necessary to carry it out. The DIVIDEND operation in element 2 and the less-equal test

m element 4 each also require a productior,. Overall, 4 more productions are necessary

for this plan.

5.1.7 Conclusions from the 4 Plans

These four new plans require increments of 3, 4, 11, and 4 new productions

respectively. This figure is based on an assumption of complete overlap, with each new

126

M

plan having available all the productions used in all prior plans. Again, it should be

emphasized tha* this estimate is a low one because it omits productions which may be

necessary to sequence between the the productions for the individual plan elements.

Another point to also note is that a priori the number of new productions required

for each new segment ought to decrease, especially after the first few, as the system

acquire« more Knowledge that can be used across situations. Even ignoring these

factors, however, the number and type of new productions needed for these new plan

elements is an impressive indication of the large amount of specific knowledge about

plans which this programmer has and which must be included in the production system.

(It should also be emphasized that this finding is not just an artifact of a lack of

generality in the particular production system used. Even if a production system were

used which had more general productions, say, as the by-product of a more

sophisticated use of variables in the matching process, the same specific information

about how to code specific plans would still have to be built into the system.)

An appropriate perspective in which to view this finding can be obtained by

comparing the number of productions required for this task (73) with that required for

two other tasks, cryptarithmetic (Newell & Simon, 1972) and a visual imagery task

(Moran, 1973). The cryptarithmetic task required 14 basic productions, (though these

productions called on 96 different actions). The visual imagery task used 113

productions, exclusive of those involved in producing veibalizatio is.

Not surprisingly considering task complexity, the model presented here required

several times as many productions as were required for the cryptarithmetic task.

Additionally, while essentially the same set of productions would probably work for

another cryptarithmetic problem by the same subject, the programming model requires

more productions for each new problem.

127

____^___._____

mm mm w^m^^mm

This latter difference is consistanf with the distinchon between problem-space

problems, such as cryptarithmetic, and dewgr tasks »wch as programming. The

product.on system used in the visual .magery kaeK provides an additional datum on the

number of productions for design tasks. To begin wrt^, note that it is of roughly the

«ame size as the production system used in this model. The important question

remaining is whether th.s same, f.xed set couW also be applied to other visual imagery

task». While the author argues that his system is a general one whicn would require

relatively few modifications to handle other tasks, he does leave the possibility open

that many more productions would be necessary to ha.idle certain typos of information;

for example, he asserts that h.s RECOGNIZE rules are "just excerpts from a larfee, but

strai«ht-forward knowledge-base of facts about spatial configurations" (Moran, 1973,

p.150). This suggests that a very large nu-nber of productions, each representing a

specific fact, as was the case in this programmmg model, .s typical of the whole class of

desgin tasks.

5.2 Support for Assertions about Symbolic Execution

Symbolic execution was defined as a method of codmg in which as each line of code

is generated an effect is assigned to it. The effect is stated in terms of the distinctions

that the program must make to acheive its purpose, so that the entire process is

equivalent to executing the code for symbolic data representing these distinctions.

The sufficiency of this assertion has already been demonstrated by the ability of

the program, which uses this mechanism, to generate code matching that generated by

the subject. Venfication of the necessity of this mechanism for expla.ning human code

generation is obtained by showing that effects of the type described above are used

continually throughout the protocols For the protocols presented in Appendix 2, the

128

^I^MVH»-"—V^W^^H^OT«

reader is invited to satisfy himself that this is the case. To provide additional support

for the assertion that this mechanism is a universal one, an experienced FORTRAN

programmer was asked to judge whether symbolic execution took place in some of the

remaining protocols not included in the appendices. He was trained by first having him

read a definition of symbolic execution and acquaint himself with it. In addition, he was

given the following guidelines:

A stiifement in the protocols was to be considered as showing symbolic execution if

1. The statement contains phrases such as "this does this," "at this

point we know ," or "if this is so then do this" which express either an

action that has been performed or a state that has been reached.

2. It was a statement of some effect that had already been

accomplished and was not just a statement of an intent to perform some

action.

3. It was not just reading aloud the code that he had written.

Following training on portions of the first 5 protocols given in Appendix 2, the judge

was asked to go through each of the sections of coding behavior in each of the other

protocols and find all lines of the protocol which met the guidelines given above. He

was able to find clear evidence of symbolic execution in 11 out of the 18 coding

segments that he look at. The task was also performed by the experimenter who found

it in 29 of the 42 coding segments in the remaining protocols. Two things should be

kept in mind in interpreting these results. First, the criteria used were very stringent

onesj only verbalizations which could not be interpreted in any other way were scored.

Second, some of the segments were very short (as little as 5 lines) and did not include

much opportunity for verbalization of symbolic execution, if it occurred. Considering

129

 "■■■-'-'■■

fillW>BBBi»pw«w«Mi»p»w»Pi»«BBW«WHpip«||pp«BM»!Wi»^w^^ww""-«w»i»»Bj iii. tiiimmm^^m»m mmwmmmif^mm^m i n ■ imipi

these factors and notemg the frequency of symbolic execution which was observed, it is

likely that symbolic execution is a ubiqitious feature of this set of protocols.

5.3 Support for Assertions »bout Syntax Knowledge

In the presentation of the model, it was asserted that a programmer's knowledge of

the syntax of a particular programming language is represented as a collection of small

pieces of code, each of which accomplishes some particular operation in the language;

the term that has been used to refer to them was "templates." The total number of

templates required to represent an actual programmer's knowledge of a given language

is important evidence for the validity of the template concept. If the number is very

large, o;\ the order of several thousand, then acquiring just the ability to write

syntactically correct statements in a new programming language ought to be a task of

great difficulty. While no experimental studies have been done on this point, anecdotal

evidence suggests that the syntax is, in fact, the easiest part to acquire. This implies

that if thousands of templates are required to represent syntactical knowledge, that

templates are probably not a good structure for representing this knowledge.

On the other hand, if only a few templates, say, less than a dozen, are adequate for

representing a programmer's syntactic knowledge, then the concept also is in difficulty,

considering the large number of possible lines or pieces of code that can be constructed

then a small number of templates would indicate that what really exists is something like

a syntax generator which uses the templates as general syntax specifiers and creates

from them an exact syntax specification for the desired statement. Since the protocols

contain no evidence whatsoever that anything like a syntax-only generator exists, the

occurence of only a small number of templates would indicate that templates as defined

m this model are not a good representation of a programmer's syntactic knowled^a.

130

■•I ■ i nt^^^^mmmm^tmmr^ ~~mmrmtrr*m

Using the model for the 4 segments and the other protocols an order of magnitude

estimate may be retained for the number of templates required to represent the

subject's total knoledge. A total of 18 templates are require for the 4 segments, but

several syntactic structures are not included in the segments which do appear in other

protocols. Four of these structures are IMPLICIT, INTEGER, DATA, and DIMENSION

statements. Since the DATA statement would require 2 templates, one each for the

statement itself and for the item structure in the statement, these structures would

require 5 templates. More templates are necessary for arithmetic expressions. Some of

these, such as the one for for incrementing the value of a variable, are syntactic units in

their own right, requiring their own templates; others are built up recursively out of

simpler templates. Eight more templates would be adequate to cover the ones seen in

the protocols. No function calls, such as calls to SQRT or ABS built-in functions,

appear in the original 4 segments though they are used in problems, PAUL and RALPH;

at least one more template would be necessary for this structure. Both conjunction

and disjunction are used in some of the tests in IF statements. Another 1-3 templates

would be necessary to include them. Finally, the arithmetic IF statement is used in

problem KEVIN; it would also require a template. Thus, at least 16 more templates, in

addition to the original 18, would be necessary to model all the syntactic structures

seen in the protocols.

In addition to those templates whose necessity can be demonstrated from the

protocols directly, the need for other templates can be inferred f^om other sources.

The file that the subject is given contains RFAD and WRITE statements and the subject

uses the WRITE statement in some of his de-bugging (though he has no need for them in

writing the programs proper); therefore, it may be inferred that templates for these

131

■■ '■ '*~^^mmmmimmt^^mmmmmmmma^*'^~~~*~ > > '

statement types are needed. At least one template apiece wHI be necessary for th«

READ and WRITE statements themselves; possibly a second or third template may be

necessary for each one if the END or ERROR options are used. The variable lists for

both statements will take an additional template, since tbe iteration construction for I/O

is not used in any other statement type. The FORMAT statement will require a first

template for the statment itself, and additional templates for each format specifier.

Assuming that the subject knows about Ef.I.X.A, and H specifiers, the repetition

construction, the next record construction, and the quoted literal construction, i

reasonable number of templates would be 9. The total needed for I/O statements would

then be 13.

In addition to I/O statements, the programmer's qualifications as an experienced

FORTRAN programmer may be used to infer his knowledge of other constructions. He

certainly knows about CALL. FUNCTION, and SUBROUTINE statements as well as STOP

and END. He also knows about COMMON and REAL declarations. These would add 7

more templates.

Adding all these figures gives a grand total of 54 This is by no means a precise

figure and is no doubt an under-estimate, since it was obtained through enumeration

only of known cases. Some of the structures estimated as requiring one template may

take several, and there is no way to guess about templates needed for arithmetic

constructions which don't appear in the protocols. It is reasonable, however, to assume

that 150 is an upper bound on the total number of templates necessary to represent

this subject's knowledge of FORTRAN syntax and structure. In the light of the previous

discussion, this is a very reasonable figure and useful evidence that templates are a

plausible model for how the programmer's knowledge about the syntax of a language is

represented.

132

^^^n^mmmmmm

An additional perspective on this figure can be obtained from analogous figures for

other tasks of comparable complexity. One candidate seems to be the number of

patterns that has been found necessary to simulate the behavior of a chess master at a

position reconstruction tasks (Simon & Gilmartin, 1973). At first glance, the figure

calculated there, 31,000, does not seem at all comparable, since it differes by more than

two orders of magnitude. Before asserting, however, that the two tasks differ markedly

in this respect, it is important to ask whether the two numbers measure analogous

things. In the chess task, the patterns are built up out of primitive objects, the moves

Of the pieces themselves. In the coding task, on the other hand, the templates are

building blocks out of which more complex code structures are built. Thus, the 150 and

31,000 figures measure entirely different kinds of knowledge units.

To derive a more comparable unit, the number of basic units 'or chess must be

calculated. The basic unit used by the Simon and Gilmartin program is the single piece,

excluding pawns, giving 6 as the number of units. The use of the single piece was

presumably selected on a priori grounds. In fact, it is possible that, for experienced

players, the basic unit may be configurations of up to 2 or 3 pieces. If this Is so, the

total number of building blocks might be close to the figure for templates in coding.

133

. - -

mmmmi^^mmmmmmmmimmmim^^*****^

Implications oi th« Mo<M

6.1 Production Systems as Behavioral Representations

In Chapter 3, the choice of production systems as control structures was defended

on the grounds of their general suitability for representing human behavior and with

out regard to whether they were an appropriate choice for representing programming

behavior in particular. At this point it is worthwhile to ask whether some other

structure might not have been more suitable. The primary characteristic of a production

system is that at any given point, the choice of the next piece of behavior is made in

parallel from among all the possible alternatives. This is not to say, of course, that

there are no sequential dependencies in the behavior produced by a production system,

but, rather, that the dependencies are a result of the specific model, not of the control

structure itself. A structure that was essentially different from a production system

would select behavior via a sequence of decisions that was an inherent part of the

control mechanism structure. To argue that production systems are a particularly good

choice for representing coding behavior requires that there is some aspect of the

coding process which cannot be easily represented in a serial fashion.

In this case, a strong argument for essential parallelism can be made from the

retrieval of knowledge about the association between plan elements and code. As was

argued in the previous chapter, a.t experienced programmer has a large body of

knowledge about how to code particular plan elements. Since this body is so large,

serial processes in searching it ought to reveal »h^mselves by extremely long retrieval

134

-

■■ ■■l

times for infrequently used plan elements, perhaps on the order of several minutes (es

versus the tenth-second retrieval time for LTM cited previously). Additionally, the

protocols ought to contain some evidence of sequential elimination of unwanted

information until the correct information is found. In this set of protocols, once the

subject has a plan, cod.ng of H begins almost immediately, and, while tht, subject may

consider altenat.ve methods of coding , plan, there is no evidence in the protocols of

rejection of inappropriate, unwanted information. This suggests that the search for

coding information for a plan element is made in a parallel manner. If this is so, then •

production system is a particularly appropriate control structure for representing

coding behavior.

6.2 Implications for the Use of Back-tracking

One of the most common ways to organize a problem solving system is as a back-

tracking sub-goaler. Systems with this organization attempt to solve problems by

reducing them to a set of sub-problems, the solution to which implies the solution to the

intial problem. When the system fails as a sub-problem which it has attempted to solve,

it returns or back-tracks to some prior, successful state. Systems of this type vary

considerably along such dimens.ons as the strategy used to generate and select sub-

goals.' the amount and k.nd of information retained from failures, and the point to which

return from occurs (Nilsson, 1971; Newell and Simon, 1972).

The model presented here is not organized as a back-tracking sub-goaler;

however, it is still of interest to mqu.re what role back-tracking plays in programming

behavior. In its purest form, back-tracking in programming would consist of completely

abandoning somt piece of code by erasmg it or crossing it out and beginning again at

an earlier point, up to which the code was known to be correct. In fact, this occurred

135

mm^mi^^^mmmmmm^^^^^M * >• • tiimtmmmmmmmmmmmmmmm'**mmm^m—m^~^*^^^^~ti i i ■^«■««wim^nMv mimu i ■■ n^

only once, in problem DAVID. A far more common occurrence, one that has already

been described in detail, is that the erroneous code is modified by inserting a line here,

crossing out a variable in another place, and changing an expression in a third. This

sort of behavior takes place in 31 of the 42 coding segments covering 20 of the 23

protocols. A specific example occurs in lines 36-37 of probtem RICHARD in which the

initialization for NEXTODD is altered; note that if backtracking behavior had taken place

in this case, it would have appeared as crossing out or abandoning all the code that has

been written so far and completely starting over beginning with the new initialization

for NEXTODD.

As explicated in Chapver 4, the model produces a corresponding behavior using the

production system and the CODE modification function»; when a mis-match occurs

between a desired effect and an actual one, productions, sensitive to the particular mis-

match, use the CODE modification functions to perform the necessary operations. Thus,

the behavior of both the model and the subject on encountering erroneous code is to

attempt to save as much of the written code as possible.

Contrast this behavior with the potential code generj'.ion behavior of systems such

as GPS (Ernst & Newell, 1969) and PLANNER (1972) which, when failure occurs, abandon

the entire attempt, send back a failure signal, and select a new subgoal. Since these

systems are always more or less starting afresh after every difficulty, the code they

produce would probably be quite clean and easy to follow while the code produced by

the subject and model may be a maze of patches and "hacks." In problem JOHN, for

example, a back-tracking system could have produced a solution using only two DO

loops instead of the four used by »ho subject.

Additionally, backtracking systems can often function using only a few general

136

T
wmmmmi^*mm**l*mmmmm—rmi^m*i^*mm

principles of program construction applied repeatedly in various possible combinations.

To create code in the same way that the subject and model do, on the other hand,

requires a great deal of specific information on how to best correct specific difficulties.

Counterbalancing these disadvantages is the main advantage of the "patch and move

forward" approach used by the subject; if the requisite information is available and if a

sloppy solution can be tolerated, it usually requires much less effort to produce a

solution than does backtracking.

6.3 Kplications for A Theory of debugging

In the first chapter the choice of program writing rather than debugging oehavior

for the focus of this theory was defended on the ground that a theory of program

writing would have stronp, implications for a theory of debugging and ought to be

developed first. As an example of the sort of connection that may be made, it is

worthwhile to explore briefly some of the implications of this theory of program writing

for error analyses.

The exploration begins with a basic premise: Errors in programming are not random

or accidental in origin but are a lawful product of the structure of the problem solving

system, and, if conditions at the time of the error are repeated, the error will be

repeated, (i) Given this premise and this theory of programming, errors in programming

fall into one of 3 classes:

1. Errors made in the Understanding process. This would include errors

attributable to mis-reading or mis-interpreting problem directions.

2. Errors made in Planning. These might be further classified into errors

caused by plan element; wnich failed to meet necessary pre-conditions, errors

(i) A possible exception: motor errors in typing.

137

■-■"■—""

due to plan elements which produce a wrong result for the overall aim of the

problem, etc.

3. Errors in Coding. Further classifications in this category would include:

a. Errors made because the wrong code wat generated for a plan

element.

b Errors r.^de because the wrong effect is assigned to a piece of

code so that it falsely appears to match the plan element.

c. Errors made because of incorrect retrieval of a variable name or

expression that has been used previously in the program.

d. Syntactically incorrect code.

To use this error classification scheme as the basis for a debugging scheme, it would

first have to be refined to a set of behavioral criteria. Then, these criteria would have

to be applied to the protocols to obtain the actual instances of errors for use in testing

the theory. Even this sort of preliminary analysis is, of course, a task requiring a

sizeable amount of effort. For this reason, the inquiry here will be restricted to asking

whether the mechanisms of the model are adequate to reproducing the various types of

error behavior.

Since the model makes no claims about the understanding or planning processes, it

is not relevant to errors occuring in them. Of the four types of coding errors, the first

two are likely to have behavioral consequences of the type described in the previous

section and can be reproduced by the production system. Errors involving incorrect

name or expression retrieval can, as was mentioned previously, be produced by the way

information is retrieved by MEANINGS. Finally, faulty templates or faulty instantiation of

a template by the production system would produce syntactically incorrect code. Thus,

138

1 ■ I II'

the model is adequate for producing errors actually seen in human codmg and would be

useful starting point for a debugging theory based on how the bugs had occurred in the

first place.

Aside from its relationship to tt»e model, it is iMerestmg to compare even thit

preliminary classification wrth the error classifrcation schemes that have been used in

other studies (Youngs, 1970; Gould and Drongowski, 1972). Excluding syntax errors,

these schemes classify errors by statement type or function; for example, as

assignment, iteration, declaration, or flow-of-control errors. Such a classification hes

two main drawbacks: First, it tends to be very dependent on a particular language

family) the distinction between flow-of-control is obscured in SNOBOL because

alternatives in pattern matches in assignment statements may directly change the flow

of control. Second, it gives no basis for determining why the error occurred, and,

therefore, gives only the scantiest clues as to how the error could be prevented.

Schemas implemented within the outline given here, on the other hand, could be largely

language independent and would provide information that could be used to reduce

errors both on an individual basis and in general programming practice.

6.4 Implications for Teaching Programming

According to this theory, programming Knowledge may be divided into three types:

1. Knowledge about plans and their approriateness for given problems.

2. Knowledge about the syntax and structure of specific programming

languages.

3. Knowledge about how to code a given plan element.

Planning Knowledge is partly dependent on information about specific domains and is

probably acquired almost exclusively by experience in programming in thesfl domains as

139

T
1"

well as from formal study of algorithms of the sort advocated by Knuth (1969).

Knowledge about language syntax is usually acquired from formal study of manuals and

similar materials which give the grammatical -ules for the language. Knowledge of the

third type consists of information of the sort, "to perform this operation in this

language, use this structure." An example for FORTRAN of this kind of information is "to

test each element of a vector, write a DO loop and use the index of the loop as the

vector subscript." In all likelihood, this knowledge is acquired by direct experience with

using these structures and operations in writing programs.

Using these knowledge types and the respective ways in which they are acquired,

certain implications for methods of teaching programming can be derived. One of these

concerns an approach to program writing called "structured programming" in which a

formal, proof methodology is used to insure the generation of correct programs

(Dijkstra, 1972). Wirth(1973) has written an introduction to programming based on this

approach. While probably not intended for use by those who are totally naive to

programming, it is still of interest to inquire whether this approach would be worthwhile

at the beginning level. The Wirth book can be characterized as linking a set of effects

stated in formal terms to each statement type of a programming language. Relatively

little attention is devoted to presenting useful higher-level constructions of these

statements. Thus, students taught using only this text would probably excel in the

second type of knowledge, but would be largely lacking the fist type. Given a

program, they would probably be able to prove its correctness, but they would have

greater difficulty than students trained by other methods in constructing programs

given problem descriptions.

6.5 Implications for Automatic Programming

140

1 ' ^MnmpwnvR^mmpi

Automatic programming in tba current sense may be defined as a process by which

a statement of the desired properties of a program is translated into actual code

without the need for detailed specification by the user of the desired flow of control.

Such systems usually also employ some semantic model of programming knowledge and

make inferences from this model. Buchanan (1974) presents a more detailed discussion

of the definition of automatic programming and an overview of existing system«.

There is nothing inherent in this definition that constrains these systems to heve the

same cognitive organization or to operate in the seme way that human programmers dot

however, since the human programmer Is still far and away the best programming

"system- known, the way humans program provides a useful prospective from which to

view these other systems. Under the assumption that newer systems will attempt to

incorporate what has been learned from the construction of previous ones, two more

recent efforts, Buchanan (1974) »nd Balzer et. al. (1973), have been selected for

inspection.

The Balzer system is unique in the automatic programming field in being based on a

system for acquiring its knowledge about the programming domain directly from

interaction with users; in other systems, this knowledge must be built into the system in

the form of premises or theoroms. The knowledge thus acquired is organized es a

Loose Model which is then transformed via a variety of problem solving methods into a

Precise Model. The Precise Model is stated as a program in a high level programming

language. When construction of the Precise Model Is complete, this program can actually

be run end is the final output of the system.

The Buchanan system is a more conventional one in that it has no knowledge of the

application domain but must rely on the system user to state the problem in a domain

141

w^mrn

independent form. An interesting feature of this system is its use of the Logic of

Programs (Floyd, 1967; Hoare, 1972) as a logical basis for program generation. Th»

logic of programs views programs as triples of the form, KP)0, which is interpreted as

"if 1 is true, and the program P is run, then 0 will be true afterward." Constructing a

program is then equivalent to proving a theorom using ths input-output assertions for

tne basic constructs of the language as axioms.

The domain acquistiion part of the Balzer system resembles quite closely the

Understanding process in the theory presented here. The way in which it generates

code, however, is entirely different and might be considered equivalent to constraining a

human programmer to using plans which were statements in a programming language.

The Buchanan system on the other hand, resembles the code process of the theory,

taking plans as input and producing code as output. The Os in the l{P)0 formalism are

analagous to the effects in the human programming model with the difference that they

tend to be stated in terms of the logical or mathematical properties of the program

rather than in terms of distinctions important to the real-world actions the program

must perform.

The primary drawback to the Balzer system would probably be that, since the

language and structure of plans is extremely constrained, the system will probably

spend considerable effort in generating them. Since the system returns to the user for

more information when II gets "stuck," this may mean considerable effort on the user's

part. Additionally, since the high level language used is a very specialized one,

considerable work on compilers and translators may be necessary to allow the system

to produce code in other languages. The drawback to the Buchanan system is that input

to it must already be in a well-specified, domain-independent form, and, as Buchanan

142

 ■■, »pB^^iW^—p-ip^||pipp»——»»«1

points out, this may be nearly as large a task as writing the program in the first place.

Given these drawbacks, combining the two systems offers intrigueing possibilities. The

domain acquisition portion of the Balzer model could eliminate the input problem of the

Buchanan system. The Balzer system, on the other hand, could beneficially use the

Buchanan system to permit a looser, more general plan language which, in turn, would

lead to more efficient, more general problem solving. The end product would be quite

liKe the model for human programming presented here and would be a closer approach

to the flexibility and power of the human programmer.

143

6

Bibliography

Bobrow, R. 1, Burton, R., & Lewis, 0. UCI Lisp Manual. Information and Computer

Sciences Department. University of CaJifornia at Irvine. 1973.

Balzer, R, Greenfield, ft, Kay, M., Mann, W., Ryder, W., Wilczynski, D., and Zobrist,

A. Domain-Independent Automatic Programming. DSC/Information Sciences

Institute. 1973.

Boehm, B.W. Software and It's Impact: A Quantitative Assessment. RAND

Corporation.1972.

Buchanan, J. A Study in Automatic Programming. Department of Computer

Science, Carnegie-Mellon University. Pittsburgh, Pa. 1974.

DijKstra, E. Notes on Structured Programming. In Dahl, O.J., Dijkstra, E. & Hoare,

C.A.R. Structured Programming Academic Press. 1972.

Chase, W.G. & Simon, H.A. Perception in Chess. Cognitive Psychology 1974.

Eastman, C. CogmtiveProcess and ill-defined problems: a case study from

design. Proc. International Joint Conference on Artifici«; Intelligence. 1969.

Ernst, G.W. & Newell, A. GPS: A Case Study in Genereiity and Problem Solving

Academic Press. New York. 1969.

Fikes, R.E. & Nilsson, N.J. STRIPS: A new approach to the application of

theorem proving to problem solving. Artificial Intelligence. Vol. 2 1971.

Floyd, R.W. Assigning Meanings to Programs. Proc. of Symposium in Applied

Mathematics, Vol. 19, 1967.

Freeman, P. & Newell, A. A model for functional reasoning in design. Proc.

International Joint Conference on Artificial Intelligence. 1971.

144

J

mm

Grant, E.E. & Sackman, H. An «xplorator/ mvastigation of programmer

parformanc« under on-lina and off-lma conditions. IEEE Transactions on

Human Factors in Eloctronics. HFE-8 1967.

Hayes, J.R. & Simon, H.A. Understanding writtet problem instructions In Gregg, L

W, Knowledge and Cognition. Lawrence Erlbaum Associates, Washington,

D.C. in press

Hewitt, C. Description and Theoretical Analysis of Planner. Unpublished doctoral

dissertation. Massachusetts Institute of Technology, 1971.

Hoare, CAR. An axiomatic basis for computer programming. Comm ACM, 12,

10, 1969.

Gelernter, K, Hansen, J.R. & Loveland, D.W. Empirical exploration of the geometry

theorom proving machine. Proceedings of the I960 Western Joint

Computer Conference, 143-147 1960.

Gold, MM Time-sharing and batch-processing: an experimental comparison of

♦heir values in a problem-solving situation. Communications of the A.C.M.

12 249-259 1969.

Gould, J. Some psychological evidence on how people debug computer

programs. International Journal of Man-machine Studies, in press.

Gould, J. & Drongowski, P. A Controlled Psychologcial Study of Computer

Program Debugging. IBM Research Report RC4083. 1972

Klahr, D. A production system for counting, subitizing, and adding. In Chase,

W.G (Ed.), Visual Information Processing. Academic Press. 1973.

Klahr, D. & Wallace, J.C. The role of quantification operators in the development

of quantity. Cog. Psych. 4 301-327. 1973

145

-

11

Knuth, Donald E. Th« Art of Computer Programming: Volum« I. Fundamental

Algorithms. Addison-Wesley Publishing Company. 1969.

Th« Art of Computer Programming: Volume 3. Sorting and Searching.

Addison-Wesley Publishing Company. 1973.

Moran, T.P. The Symbolic Imagery Hypothesis: A Production System Model.

Department of Computer Science. Carnegie-Mellon University. 1973.

Miller, G.A. The magical number seven plus or minus two. Psychological Review

63:81-97. 1956.

Newell, A. Notes on the psychology of programming. Computer Science

Department. Carnegie-Mellon University, (forthcoming)

Newell, A. PSG Manual. Computer Science Department. Carnegie-Mellon

University. 1974.

Newell, A. A theoretical exploration of mechanisms for coding the stimulus. In

Melton, A.W. & Martin, E. (Eds.) Coding Processes in Human Memory. Winston.

1973.

Newell, A. & Simon, H.A. Hu.-nan Problem Solving. Prentice-Hall. New York.

1972.

Nilsson, N.J. Problem Solving Methods in Artificial Intelligence. McGraw-Hill. New

York. 1971.

Quam, L & Diffie, W. Stanford Lisp 1.6 Manual. Stanford Artificial Intelligence

Laboratory. Stanford University. 1974.

Rubey, R. J. A Comparative Evaluation of PL/1. Datamation. December, 1968.

Schatzoff, M., Tsao, R. & Wiig, R. An experimental comparison of time sharing

and batch processing. Communications of the ACM. V.10(5) 1967.

146

1 m"1 " ■' ■ ■' — ■• ™ mwm^mnm i i

Sima, M.E., Green, T.R.G., and Guest, D.J. Psychological evaluation of (wo

condtional construction« used in computer languages. International

Journal of Man-MKhine Studies. 5(1) 105-113 1973.

Simon, H.A. The Heuristic Compiler. In Simon, H.A. & Siklossy, L. (Eds.),

Representation and Meaning. Prentice-Hall. Englewood Cliffs, N.J. 1972.

Simon, H.a. & Kofovsky, K. Human acquisition of concepts for sequential

patterns. Psychological Review, 70534-536 1963.

Simon, H.A. & Gilmartin, K. A simuLtion of memory for chess positions. Cognitive

Psychology. 1974.

Smith, LB. A comparison of batch processing and instant turnaround.

Communicationa of the ACM. V.10(6) 1967.

Sussman, G. A computational model of skill acquisition. Doctoral d.ssertation.

Massachusetts Institute of Technology. 1973.

Sussman, GJ. & McDermott, O.V. Why Conniving is better than Planning. Proc.

FXC41. 1972.

Weinberg, ft Psychology of Programming. Van Nostrand Reinhold Co. New

York. 1971.

Weissmen, Lerry Psychological complexity of computer programs: An initial

experiment. Computer Systems Research Group. University of Toronto,

1973.

Weinberg. Gerald & Schulman, Edward Goals and performance in computer

programming. Human Factors Vol. 16(1) 1974.

Wirth, Niklaus Systemic Programming: An Introduction. Prentice- Hall. Enßlewood

Cliffs, N.J. 1973.

147

-

■• ■ ■■ mmw mtmmmmKi

Young, R'chard Children's seriation behavior: a production system analysis.

Unpublished doctoral dissertation. Psychology Dept. Carnegie-Mellon

University. 1973.

Youngs, Edward Error-proneness in programming. Unpublished doctorJ

dissertation. University of North Caroline at Chapel Hill

148

_____^^__ ________ flluHBMBjtMMU

Index

CODE-EL
CODE-GEN
coding templates

53
53

53,71

EFFECT
effects, in model

49
53

General Problem Solver 51

human problem solving. theory 10

LOOK-AT-CODE 32

modifying code 58

NEW-CODE 54

OLDCODE 53

plans, content of
plans, language of
plans, model representa
production system
PUTARG

tion

54
li
10

33

re-writing code
rehearsal
RETRIEVE-CODE

53
54
57

short-term memory
SIMILAR-EFFECT
symbolic execution. defined

46,54
32
54

149

